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Abstract

Accurate component separation of full-sky maps in the radio and microwave frequen-

cies, such as the cosmic microwave background (CMB), relies on a thorough under-

standing of the statistical properties of the Galactic foreground emissions. These Galac-

tic emissions include Galactic synchrotron, free-free, Anomalous Microwave Emission

(AME), thermal dust emissions, etc. This thesis aims to characterize these foreground

components with the goal of improving the component separation methods in exper-

iments looking for cosmological signals. For this, we utilize a set of geometric and

topological tools such as Minkowski functionals (MFs) and Minkowski tensors (MTs),

along with conventional tools like power spectrum, skewness, kurtosis, etc. We be-

gin our analysis by studying the MFs for composite random fields, which are the sum

of two fields. Using analytic expressions for MFs, we examine and quantify how the

presence of a secondary field, such as noise or any residual contamination, affects the

morphology of the field of interest, say the CMB field. We find that the secondary field

can alter the amplitude and nature of non-Gaussianity of the signal field, depending

on the signal-to-noise ratio (SNR) and the relative size of structures of the two fields.

Next, we focus on the statistical properties, namely non-Gaussianity and statistical

isotropy (SI), of the all-sky Haslam 408 MHz temperature map, which is widely used

as a proxy for synchrotron emission. Our goal is to investigate how the non-Gaussian

properties vary at different spatial regions as well as angular scales of the Haslam map.

We find that the overall level of the non-Gaussian deviations does decrease as more

high-emission regions are masked and as we go down to smaller scales, in agreement

with the results obtained in earlier works. Our results show that the leading sources of

non-Gaussianity are the kurtosis terms, with skewness terms being subdominant at all

angular scales. We test the SI of the Haslam map and find that it becomes increasingly

more isotropic towards smaller scales. Next, we examine the Galactic emission maps

at high-frequency bands provided by WMAP and Planck CMB experiments. Here,



our goals are two-fold. First, we determine the variation of morphological properties

of the total foreground with observing frequency and compare them with simulations.

This study elucidates how the morphology varies with frequency due to the relative

dominance of different foreground components at different frequencies. This is an

example of a composite field composed of different foreground signals. Secondly, we

use various component-separated synchrotron temperature and polarization maps to

determine the nature of non-Gaussianity and SI of synchrotron fluctuations towards

smaller scales. We find that all maps exhibit kurtosis-type non-Gaussianity, in agree-

ment with the Haslam map. This result can be an important input for modelling

small-scale synchrotron fluctuations for component separation pipelines. From a com-

parison of the different component-separated maps, we find that these synchrotron

maps show morphological differences of varying statistical significance. Our analysis

suggests a combination of residual AME and/or free-free emissions and point sources

as contributing to these differences and underscores the need for further improvement

of the pipelines. As a next step, we study the statistical properties of other major

Galactic emissions, namely free-free, AME and thermal dust. In this work, we investi-

gate whether the observed kurtosis nature of non-Gaussianity in synchrotron maps is

a generic feature of foreground emissions or any random field with positively skewed

probability distribution. Our study using different toy models of random fields reveals

that the nature of non-Gaussianity is dependent on the underlying distribution of the

field and is not a generic feature. We find that, at small scales, the non-Gaussianity of

all the foreground fields is of kurtosis origin, with different levels of non-Gaussianity for

different fields. These findings provide valuable insights into preparing realistic non-

Gaussian models of foreground components. In the last part of the thesis, we introduce

a new morphological tool known as total absolute curvature (K), which can comple-

ment MFs in extracting the properties of different random fields, including foreground

fields. Our results open up new avenues in the statistical modelling of foreground

components, thereby enhancing the efficiency of foreground removal techniques for

CMB and other cosmological experiments.
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Chapter 1

Introduction

In the past several decades, the understanding of the universe has made rapid

progress. This is due to advancements in observational cosmology along with the-

oretical developments. These developments have led to the formulation of the

Λ-CDM model or the standard model of the universe. The Λ-CDM stands for

Lambda-Cold Dark Matter model. This model is described by six basic param-

eters, with the spatial curvature being zero (flat universe). More complicated

extensions have more than six parameters. According to the Λ-CDM model, the

universe is composed of three primary constituents: dark energy, dark matter and

ordinary matter. These comprise roughly 70%, 26% and 4% of the total energy

density of the universe, respectively (Hinshaw et al. 2013a). Radiation (photons

and neutrinos) in the universe constitutes a small portion of this energy budget,

about 0.001%. The Λ-CDM model tells that the dark matter in the universe is

non-relativistic and cold, and the cosmological constant (Λ) is the most plausible

candidate for dark energy. The universe began as a hot and dense system in its

early history. This phase is usually termed as the hot big bang phase. It has been

expanding since then, and at present, the rate of expansion is accelerating (Riess

et al. 1998; Perlmutter et al. 1999). The major evidence in support of the Λ-CDM
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model has been provided by observations of the cosmic microwave background

(CMB) (Planck Collaboration et al. 2020a). Further evidence has been provided

by the observations of large-scale structures such as galaxies, galaxy clusters and

quasars (Alam et al. 2021).

The general theory of relativity provides the framework for theoretically under-

standing the universe. The Cosmological Principle (CP), which states that the

universe is homogeneous and isotropic on sufficiently large scales, reduces the

number of dynamical degrees of freedom (DOF) of the metric to just one. This

DOF is just the expansion factor of the 3-dimensional space∗. CP is indeed sup-

ported by observations of the spatial distribution of galaxies and clusters (Yadav

et al. 2010; Andrade et al. 2022). Towards smaller scales, the universe exhibits

inhomogeneities in the form of a complex web of structures – groups and clusters

of galaxies, voids, filaments, walls, etc. This is also seen in the CMB in the form

of tiny anisotropies (Smoot et al. 1992). To theoretically study the universe at

these length scales, we express the metric as a spatially constant background term

and a spatially fluctuating term. The distribution of matter and radiation can

be similarly decomposed (Harrison 1967; Bardeen 1980). The equations for the

background and perturbed part are given by Einstein’s equation and the energy-

momentum conservation equations.

Λ-CDM model, by itself, does not explain the origin of fluctuations that we see in

the distribution of matter and radiation. This explanation is provided by invok-

ing a phase of accelerated expansion in the very early universe, which is usually

driven by a scalar field (inflaton field) (Starobinskii 1979; Guth 1981; Linde 1982;

Mukhanov & Chibisov 1981; Guth & Pi 1982). This period is referred to as ’infla-

tion’. The quantum fluctuations of the inflaton field explains the origin of density

fluctuations in the universe. These tiny perturbations then got enhanced under

∗There is another degree of freedom, the curvature of the universe, which, based on observa-
tions, can be regarded as zero.



Chapter 1: Introduction 3

gravity and became seeds for the growth of structures such as galaxies and clus-

ters. These perturbations are also responsible for the anisotropies observed in the

CMB sky (Mukhanov 1992; Dodelson 2021).

The CMB radiation holds fundamental significance in our understanding of the

origin and evolution of the universe. Predicted in 1948 (Gamow 1948; Alpher &

Herman 1948) and discovered in 1965 (Penzias & Wilson 1965), it provides strong

evidence for Λ-CDM model. In the early universe, the photons, electrons and other

charged particles were in constant interactions in the primordial plasma through

Thomson scattering. As the universe expanded and cooled, neutral atoms began

to form combining electrons and protons, thereby ceasing these interactions. As

a result, the photons started free-streaming, and the universe became transparent

to light. The CMB is this relic radiation from the big bang. At this point, the

universe was approximately 380,000 years old. The surface from which the CMB

was emitted is known as the last scattering surface (LSS). In other words, the

CMB provides a snapshot of the LSS, bringing us information on the physical

conditions pertaining to the early universe.

CMB is thermal radiation. It is the most perfect black body radiation ever mea-

sured. As discussed earlier, it has a mean temperature of T0 = 2.725K, with an

rms fluctuation of 10−5K. According to inflationary theory, CMB anisotropies are

Gaussian distributed. Consequently, these anisotropies are well studied using the

angular power spectrum, through which we constrain the cosmological parame-

ters associated with the Λ-CDM model. CMB is linearly polarized. Quadrupole

anisotropy at LSS via the Thomson scattering of photons and ions leads to the

polarization of CMB signals. In CMB polarization analysis, Stokes parameters Q

and U are expressed in terms of two scalar quantities E- and B-modes. Scalar

density fluctuations are responsible for the E-mode signals. Primordial tensor

perturbations produce B-modes and, thus, B mode signals are the signatures of

primordial gravitational waves.
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Advancements in CMB science have been realized through a series of observations

employing ground-based, space-based, and balloon-borne telescopes (Penzias &

Wilson 1965; Mather et al. 1990; Bennett et al. 2013; Thornton et al. 2016; Planck

Collaboration et al. 2020a; Balkenhol et al. 2023). Efforts are ongoing to uncover

the subtle features within the CMB anisotropies. One major area of investiga-

tion is CMB polarization, specifically the detection of primordial B-mode signals.

CMB B-modes provide strong observational support for the theory of inflation

and measure the energy scale of inflation. Other major CMB characteristics being

explored include the search for primordial non-Gaussianity and distortions in the

black-body spectra, small-scale features such as CMB lensing, etc., which all can

shed light on the physical processes that happened at different evolutionary epochs

of the universe (Abazajian et al. 2019; Chang et al. 2022; Allys et al. 2023).

Foreground emissions, mainly the signals from our Galaxy, pose a severe challenge

for detecting tiny features in the CMB. CMB B-mode measurement is complicated

because of the highly polarized Galactic synchrotron and thermal dust emission,

which dominates at all the frequency bands and the sky regions (Remazeilles et al.

2016). Foreground signals are highly non-Gaussian and, therefore, bias the mea-

surement of primordial non-Gaussianity (Hill 2018). This necessitates the process

of component separation in the CMB data analysis, removing unwanted Galac-

tic emissions and isolating the signal of interest (Delabrouille & Cardoso 2009).

Many of these separation techniques are based on the idea of ’know your enemy’,

involving a thorough characterization of foreground emissions to subtract them

effectively. As a result, an in-depth understanding of the properties of Galactic

signals is crucial to obtaining an unbiased estimate of subtle CMB features. This

thesis is developed with the objective of enhancing our understanding of Galactic

foregrounds, particularly focusing on their statistical and morphological charac-

teristics.

In section 1.1, we discuss the background cosmology and dynamical evolution
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of the universe. A detailed description of perturbations in the context of CMB

anisotropies is included in the next chapter. In section 1.2, we elaborate further

on the challenges posed by foreground signals for CMB observation. Section 1.3

describes the statistics we use to characterize different foreground emissions. Sec-

tion 1.4 provides a summary of the main objectives of the thesis. This chapter

concludes by providing an overview of the thesis structure in section 1.5.

1.1 Background cosmology

One of the major milestones in our understanding of the cosmos is Hubble’s dis-

covery of the expanding universe. Through his observations of distant galaxies in

the 1920s, Hubble found that galaxies are moving away from one another, indi-

cating an overall expansion of the universe (Hubble 1929). This also meant that,

extrapolating backwards in time, all the galaxies were close together. This led to

the concept of the hot big bang, where the universe began as an extremely hot

and dense system approximately 13.8 billion years ago.

The groundbreaking discovery of Hubble gave us the Hubble-Lemaître law, which

established the direct relationship between the distance to a galaxy and its reces-

sional velocity as

v = H0d, (1.1)

where H0 is called the Hubble constant. Using Cepheid variables, Hubble com-

pleted his observations and estimated H0 as 500 km/s/Mpc.

Assuming CP, we can write the FLRW metric (Friedmann 1924; Lemaître 1931;

Robertson 1935; Walker 1937) with the line element (ds) as,

ds2 = −c2dt2 + a2(t)
[ dr2

1− kr2
+ r2dθ2 + r2sin2θ dϕ2

]
. (1.2)
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The scale factor a(t) describes the expansion of the space for any time t. k is the

curvature parameter that represents the geometry of the universe. The value of k is

either 0, +1 or −1. If k = 0, the universe has a flat geometry (Euclidean). k = +1

corresponds to positive curvature while k = −1 indicates negative curvature.

r, θ and ϕ are called the comoving coordinates, which are the spatial coordinates

when there is no expansion. In a comoving coordinate system, objects remain

static and do not experience expansion. The spatial distance between two objects

in this coordinate system is called comoving distance (dc), which remains fixed

with respect to the expansion. However, the actual distance between the two

objects, called the proper distance (dp), varies with time because of the expansion

of the underlying space between them. In other words, the recession of galaxies

from one another in an expanding universe is not due to their intrinsic motion

through space. Instead, galaxies remain fixed in their coordinates while the space

between them expands.

Comoving distance and the proper distance are related as,

dp(t) = a(t)dc. (1.3)

Normalising the present-day value of scale factor (a(t0)) as unity, a(t) for any time

t tells us how small the universe was then with respect to today. Also, at the big

bang, the scale factor is zero. The rate of change of proper distance is given as

v(t) ≡ ȧdc =
ȧ(t)

a(t)
dp(t) ≡ H(t)dp(t). (1.4)

Here, the dot denotes the derivative with respect to time and H(t) is the Hubble

parameter. In this way, we recover the Hubble’s relation between the velocity of

the receding galaxies and their distance, with H(t) given as,

H(t) =
ȧ(t)

a(t)
. (1.5)
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H(t) determines the rate of expansion of the universe at a given time and is

again a function of time. Today, Hubble parameter value (H0 as seen in Hubble’s

law) is found to be around 70 km/s/Mpc, with slight variations of a few per

cent depending on the cosmological measurements and data sets utilized (Planck

Collaboration et al. 2020d; Riess et al. 2022).

For k = 0†, FLRW metric given in eq. (1.2) becomes,

ds2 = −c2dt2 + a2(t)
(
dr2 + r2dθ2 + r2sin2θ dϕ2

)
. (1.6)

The light from a galaxy located at r distance from the Earth (assuming the Earth

to be the origin) follows a null geodesic (ds2 = 0) i.e.,

c2dt2 = a2(t)
(
dr2 + r2dθ2 + r2sin2θ dϕ2

)
. (1.7)

Light travels radially towards us (dθ = 0, dϕ = 0), and hence, the comoving radial

distance to the galaxy,

r =

∫
cdt

a(t)
, (1.8)

and, the proper distance is,

dp = a(t)

∫
cdt

a(t)
. (1.9)

As light travels through expanding space, its wavelength gets stretched. So, when

we receive light from a galaxy, it will be redshifted proportional to the amount

of expansion it has undergone since it was emitted. The farther the source, the

greater the expansion and the larger the redshift. This cosmological redshift (z)

is expressed in terms of the scale factor as,

λo

λe

=
a(to)

a(te)
=

1 + ze
1 + z0

, (1.10)

†Observations have shown that the universe has a flat geometry (de Bernardis et al. 2000;
Lange et al. 2001). In the forthcoming discussions, we consider k to be equal to 0, unless stated
otherwise.
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where the subscript e and o correspond to emission and observation, respectively.

The scale factor today, which is also the scale factor during observation, is set to

unity. Also, the redshift in the present-day universe is taken as zero. Therefore,

light emitted when the universe was 1/a times the current size undergoes a redshift

z given by,

1 + z =
1

a(t)
. (1.11)

Thus, redshift indicates how small the universe was compared to the current size.

For instance, the redshift when the CMB started free-streaming is 1100, implying

that during recombination, the universe was 1100 times smaller than today.

Einstein equation of the general theory of relativity explains the dynamics of the

universe.

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.12)

where Rµν is the Ricci tensor and R is its contracted version, called Ricci scalar.

They are the measure of the curvature of the space-time. Rµν is obtained using

the second derivatives of metric tensor gµν . Tµν represents the energy-momentum

tensor, which is the measure of the energy and momentum contained in the space-

time. Assuming CP, it is possible to consider the matter in the universe as a

homogeneous perfect fluid. For such a fluid, Tµν can be written as,

Tµν = (ρ+ p)uµuν − pgµν , (1.13)

Here, ρ and p are the energy density and pressure of the fluid, respectively. uν is

the four-velocity of the fluid.

Using the above expression for Tµν and the FLRW metric applied in the Ein-

stein equation, we get the Friedmann equations that govern the dynamics of the
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background universe.

( ȧ
a

)2
+

k

a2
=

8πGρ

3
(1.14)

ä

a
= −4πGρ

3
(ρ+

3p

c2
). (1.15)

Here, ρ is the total energy density of the universe, which is the sum of the energy

densities of different constituents, ρ =
∑

i ρi, namely matter, radiation and dark

energy. Matter encompasses baryonic matter (the combined term for all visible

matter in the universe) and dark matter, while radiation comprises photons and

relativistic neutrinos. Each of these components is characterized by the equation

of state (EoS; ω), which is the ratio of the pressure (p) of the component to its

energy density (ρc2). Matter in the universe is pressure-less (ω = 0), while the

radiation follows ω = 1/3. The most acceptable model for dark energy is the

cosmological constant (Λ), having ω = −1.

The second Friedmann equation provides information about the nature of the ex-

pansion, indicating whether it is accelerating or decelerating. The second deriva-

tive of the scale factor, ä, is negative for matter (p = 0) and radiation (p = ρc2/3),

implying that these components result in an expansion that slows down with time.

For dark energy, the pressure is negative (p = −ρc2 for the cosmological constant

model). As a result, ä is always positive, explaining the observed accelerated

expansion of the current universe.

We can redefine the energy density of each of these components with respect to

the total energy density as dimensionless density parameters,

Ωi ≡
ρi
ρc

=
8πGρi
3H2

, (1.16)

where ρc = 3H2/8πG is the total energy density for flat geometry, also called

the critical density. Today, the critical density has a value of approximately
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10−26 kg/m3.

Using the continuity equation, we can study the evolution of the energy density

for different components. It is obtained from the Bianchi identity, which says

that the covariant derivative of the energy-momentum tensor is zero (∇µTµν = 0).

Continuity equation is given as,

ρ̇+ 3H(ρ+
p

c2
) = 0. (1.17)

The energy density of each component varies with scale factor as ρ ∝ a−3(1+ω),

where ω is the equation of state. For matter, ρm ∝ a−3, while for radiation,

ρr ∝ a−4. For cosmological constant with ω = −1, ρΛ remains unchanged with

time. Today, the energy composition is predominantly governed by dark energy

(ΩΛ ∼ 0.7). Using the above relationships for the evolution of energy densities, we

can infer that there are epochs in which different components, namely matter and

radiation, assume dominance in the universe. This allows us to categorize cosmic

history into distinct epochs: radiation-dominated (RD), matter-dominated (MD),

and dark energy-dominated (ΛD).

In the beginning, the dominant component in the universe was radiation‡. In this

epoch, the scale factor varied with time as a(t) ∝ t1/2, and the Hubble parameter

H(t) = 1/2t. This epoch remained until 47,000 years after the big bang, followed

by matter-epoch, where the universe was filled with matter, with a(t) ∝ t2/3.

During this time, H(t) = 2/3t. In both these epochs, the expansion of the universe

was decelerating. After the matter-dominated era, the dark energy-dominated era

started with accelerated expansion. In this phase, a(t) follows an exponential

evolution with time, a(t) ∝ eH0t, and the Hubble parameter remains constant. A

schematic plot of ρ versus a for different constituents is shown in figure 1.1.

‡Note that the inflationary epoch was even before this. For the sake of the continuity of
discussion, we postpone the discussion on inflation to a later section.
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Figure 1.1: Energy density (ρ) versus scale factor (a) for different constituents
in the universe.

Friedmann equation (eq. (1.15)) governs the evolution of the Hubble parameter

and hence, the rate of expansion at different epochs. Using the relation between

the energy density of different constituents with scale factor and the density pa-

rameters, we can express the Hubble parameter in terms of scale factor as,

H2(a) = H2
0

[
Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0

]
. (1.18)

The subscript 0 in Ωi,0 represents the present value of the corresponding density

parameter. Using a(t) = 1/(1 + z), we can express the Hubble parameter as a

function of the observable quantity z,

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0

]
. (1.19)
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Parameter Name Value

Ωm matter density 0.3158

ΩΛ cosmological constant density 0.6842

Ωb baryonic matter density 0.0498

Ωc dark matter density 0.2675

Ωr radiation density 7.9× 10−5

H0 [km s−1Mpc−1] Hubble parameter 67.32

Table 1.1: The present-day density parameters (Ωi,0) and Hubble parameter
(H0) estimated using the latest Planck CMB temperature and polarization mea-
surements (Planck Collaboration et al. 2020d).

Rearranging H(t) = ȧ(t)/a(t), we can calculate the time at any epoch since the

big bang as

t =

∫ a

0

da′

a′H(a′)
. (1.20)

Substituting for H(a) from eq. (1.18) and taking a = 1 for the present time, the

age of the universe today is,

t0 =
1

H0

∫ 1

0

da/a

[Ωm,0a−3 + Ωr,0a−4 + ΩΛ,0]
1/2

. (1.21)

From the above expression, it is clear that the age of the universe is dependent

on various cosmological parameters in the present-day universe. According to

the latest estimates of cosmological parameters from Planck CMB data, the age

of the universe is approximately 13.79 billion years (Planck Collaboration et al.

2020d). Density parameters and the Hubble parameter obtained from Planck

measurements are given in table (1.1).

The temperature and the energy density of radiation are related by ρr ∝ T 4,

following Stefan’s law. Additionally, we have seen that the energy density falls

with scale factor as ρr ∝ a−4. Combining both these, we get

T ∝ 1/a. (1.22)
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As the universe expands, the scale factor increases and the temperature of the

universe falls down. During the early days, the size of the universe was smaller,

and the temperature and the density were very high, giving rise to the hot big bang

phase. The present-day average temperature of the universe is T0 = 2.725K (Fixsen

2009), the average CMB temperature.

Now, let us summarize the key physical processes that took place in the early

universe in chronological order. These processes, which are strongly influenced

by the ambient temperature at each epoch, played a crucial role in shaping the

universe as we observe it today.

• Inflation — This is the phase when the universe underwent an exceptionally

rapid exponential expansion for about 10−36 s. Inflation must have happened

10−33 − 10−32 s after the big bang. During inflation, the volume of the uni-

verse increased by a factor of approximately 1078. In the basic models, infla-

tion is driven by the inflaton field, with an energy scale of about 1015 − 1016

GeV. While the exact cause of this expansion is still an active research topic,

the concept of inflation is crucial in explaining several key features of the ob-

served universe. These features include the uniformity observed in the CMB

(horizon problem), the flat geometry of the universe (flatness problem), the

absence of magnetic monopoles etc. More importantly, the inflationary phase

in the early universe played a significant role in generating the primordial

density fluctuations, which resulted in the formation of structures such as

stars and galaxies in the present universe.

• Reheating — Reheating is the period after inflation when the inflaton field

decays to ordinary standard model particles such as radiation, baryons and

leptons. The oscillations of the scalar field play a crucial role in particle pro-

duction and reheating. As inflation concludes, the field undergoes oscillations

near the minimum of its effective potential, generating elementary particles.
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These particles subsequently interact and eventually reach thermal equilib-

rium, giving rise to the concept of the temperature of the universe (Kofman

et al. 1997). The temperature at this phase is referred to as the reheating

temperature. Our understanding of this epoch in the universe is limited.

Theoretical works indicate that reheating is associated with a parametric

resonance instability.

• Baryogenesis — This is the process that led to the baryon asymmetry

in the universe, ie. the excess of matter (baryons) over anti-matter (anti

baryons). According to the standard model, there must be an equal amount

of baryons and anti-baryons in the universe, which is contrary to what we see

today; the universe has a non-zero baryon number. The most preferred view

is that the universe began with the perfect symmetry of matter and anti-

matter, which is later broken due to the physical process that happened dur-

ing baryogenesis. Several theories within the realm of particle physics, such

as the Sakharov conditions, propose scenarios where processes during the

early universe involving violations of baryon number conservation and CP-

symmetry led to the generation of more baryons than antibaryons (Sakharov

1967).

• Nucleosynthesis — Big bang nucleosynthesis (BBN) is the process through

which light atomic nuclei are formed in the early stages of the universe when

the temperature was approximately 109 K (Alpher & Herman 1949). In

this phase, which was approximately 200 seconds after big bang, protons

and neutrons in the primordial hot and dense plasma combined to form

nuclei of the light elements such as deuterium, helium and trace amounts

of lithium. The abundance of these light elements was strongly influenced

by the balance between the rate at which the universe expands and the rate

of nuclear reactions. As the universe expanded and cooled, the reactions

gradually ceased.
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The predictions of primordial nucleosynthesis are in excellent agreement with

abundance measurements of light elements in the universe (Fields et al.

2020). This further supports the validity of the hot big bang theory and

provides valuable insights into the conditions and processes that prevailed

during the first few minutes after the big bang.

• Recombination and Photon Decoupling — As the universe continued

to expand and cool down to approximately 3,000 K, the conditions became

favourable for recombination to occur. Recombination involves the formation

of neutral hydrogen atoms as free electrons combined with protons. At

the same time, due to the expanding universe, the universe further cooled

down, and the energy of the photons decreased to a point where they were

no longer able to ionize the atoms or interact with them. This process is

called decoupling, which led to the release of CMB radiation. This happened

when universe was about 3× 105 years old (z ∼ 1100). Until then, photons

were interacting with the electrons and protons in the primordial plasma via

Thomson scattering, and therefore, the universe was opaque. At the LSS,

photons started travelling freely, largely unimpeded, until they reached us

as the CMB. As a result, the universe became transparent to light.

• Dark ages, formation of luminous objects and reionization — After

the decoupling, the universe entered a period known as the "dark ages", filled

with neutral hydrogen and without significant light sources. Over time,

the density fluctuations started to clump under gravity, forming the first

luminous objects, stars and galaxies and marking the end of the dark ages.

These luminous sources started to form when the universe had an age of

about 1 billion years (z ∼ 20). The energetic radiation from these sources

led to the reionization of the neutral hydrogen in the intergalactic medium,

transforming it from a neutral to an ionized state. This phase is known as the

Epoch of Reionization (EoR). Our knowledge about this epoch is limited.

Understanding the dark ages, the formation of the first luminous objects,
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and the process of reionization is an important future goal in cosmology. 21

cm radiation emitted by the neutral hydrogen is a key observable in studying

the epochs of the dark ages and the reionization process.

• Structure Formation — The formation of cosmic structures, such as stars,

galaxies and clusters, from the initial density fluctuations in the universe is

termed as structure formation. As the universe evolves, the initial inhomo-

geneities in the universe grow under gravity to become more denser. Yet,

until decoupling, baryonic matter was in constant interaction with photons,

which prevented the gravitational clustering of ordinary matter. Dark mat-

ter, on the other hand, does not interact with photons, and thus, dark mat-

ter density fluctuations could grow denser even before CMB release. As the

universe decoupled, baryonic matter started collapsing under gravity and

started falling into the potential well of dark matter. Over time, gas within

these gravitational wells cools, condenses, and collapses, leading to the for-

mation of galaxies and galaxy clusters, as we see today (Peebles 1980).

• Dark Energy Dominated Era — In the later phase of the universe, dark

energy takes centre stage, driving the expansion of the universe accelerating.

This phase, which commenced around 5 to 6 billion years ago (z ∼ 2) and

continues until today, marks a significant shift in cosmic dynamics. It influ-

ences the formation and distribution of cosmic structures, including galaxy

clusters and superclusters. This epoch is similar to the inflationary epoch,

where the scale factor grows exponentially. Due to the rapid expansion,

gravitational potential wells in the universe evolve quickly, inducing addi-

tional anisotropies in the CMB. Ongoing research seeks to understand the

nature of dark energy and its profound implications, shedding light on the

dynamics of the universe at late times.



Chapter 1: Introduction 17

Figure 1.2: The rms amplitude of CMB and various Galactic emissions in
temperature (left) and polarization (right) (Planck Collaboration et al. 2020a).

1.2 Foreground challenges for CMB observations

As noted earlier, the presence of foreground signals creates substantial hurdles

when trying to detect the tiny features within the CMB. These microwave emis-

sions originate from various sources, such as our atmosphere, the solar system, the

Milky Way galaxy, and other galaxies, and contaminate the primordial signal. Out

of these sources, diffused emission from our Galaxy proves to be the most problem-

atic. Major Galactic foregrounds include Galactic synchrotron emission, free-free

radiation (thermal bremsstrahlung), dust emission, Anomalous Microwave Emis-

sion (AME), etc. Additionally, there are molecular line emissions such as carbon

monoxide (CO) emissions.

Galactic emissions can be broadly classified based on their polarization proper-

ties and how they bias the CMB polarization studies. In intensity, all these five

foreground components contribute. Free-free, AME and molecular lines are not

known to be polarized and, thus, do not cause major challenges for CMB polariza-

tion studies. On the other hand, Galactic synchrotron and thermal dust emission,

due to their association with the Galactic magnetic field (GMF), are highly polar-

ized. As a result, these two signals cause significant difficulties in detecting CMB

B-modes (Dunkley et al. 2009; Ade et al. 2015; Planck Collaboration et al. 2020f).
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Figure 1.3: Angular power spectra (Cℓ) of primordial B-modes for different
tensor-to-scalar ratio (r), along with the power spectra of Galactic foregrounds
(dust+synchrotron). Cℓ for temperature, E-modes and lensing B-modes are also
shown for comparison. The figure is taken from Dunkley et al. (2009).

Figure 1.2 shows the rms amplitude of CMB and various Galactic components

in temperature (left panel) and polarization (right panel) in the frequency range

where Planck observed. The plots illustrate how different components exhibit dis-

tinct frequency spectra, which are shaped by the astrophysics of their emissions.

Although there are numerous foregrounds in temperature, there is a frequency

window (60 − 140GHz) where the CMB signal surpasses the cumulative impact

of all foreground emissions. This simplifies the task of creating CMB temperature

maps from raw data. However, for polarization studies, the case is more complex.

Although there are only two foreground components, there exists no frequency

range where primordial signals are dominant over the sum of foregrounds. The
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situation is even worse for the primordial B-mode signal. The angular power spec-

trum (Cℓ) of primordial B-modes for different tensor-to-scalar ratio (r)§ together

with the Cℓ of the sum of Galactic foregrounds (synchrotron + dust) is shown in

Figure 1.3. We see that the primordial signals have amplitudes much lower than

the Galactic signals, complicating the attempts for B-mode detection. In fact,

the false B-mode detection by the BICEP collaboration in 2014 was because of

the improper handling of polarized thermal dust emission (BICEP2 Collaboration

et al. 2014; Ade et al. 2015).

Accurate modelling of foreground emissions and improving the performance of

component separation methods are major ways forward. Several efforts have been

undertaken in this direction (Leach et al. 2008; Planck Collaboration et al. 2014,

2020f). Since each foreground component exhibits unique frequency characteris-

tics, a standard practice in separation methods involves fitting an effective para-

metric signal model to a set of multi-frequency observations. The Commander

algorithm, which was widely used in Planck analysis, is an example of such a

technique (Eriksen et al. 2004b, 2008). Increasing the frequency coverage of the

experiment and including external data sets as foreground templates are other

possible pathways to address the foreground challenge. For example, the all-sky

Haslam 408 MHz map (henceforth, Haslam map) is widely used as a synchrotron

template (Haslam et al. 1981, 1982). Planck had a wide frequency coverage so as

to include the bands where thermal dust emission dominates. H-α templates are

used as a proxy for free-free in WMAP and Planck analysis (Finkbeiner 2003).

Synchrotron emission, due to the interaction of relativistic electrons with the GMF,

has a power-law frequency spectrum, Isync ∝ νβsync . Here, βsync is the spectral in-

dex (Rybicki & Lightman 1985). Modelling the parameter βsync becomes intricate

as it shows variations across the sky (Miville-Deschênes et al. 2008; Fuskeland

§The tensor-to-scalar ratio (r) quantifies the relative strength of B-modes (tensor perturba-
tions) in comparison to E-modes (scalar perturbations). Detailed discussions on angular power
spectrum and tensor-to-scalar ratio are included in chapter 2.
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et al. 2021) and exhibits spectral steepening, in both temperature and polariza-

tion (Kogut 2012; Dickinson et al. 2019). WMAP 23 GHz map is a good proxy

for synchrotron polarization but is limited by low sensitivity at high Galactic lat-

itudes where the CMB analysis is carried out. At very low frequencies (< 5GHz),

synchrotron polarization is strongly influenced by depolarization effects like Fara-

day rotation, demanding all-sky synchrotron templates in the range 5 − 50GHz.

SPASS, CBASS and QUIJOTE surveys are being set up with this objective (Car-

retti et al. 2019; Harper et al. 2022; Rubino-Martin et al. 2023).

Thermal dust emission is due to the heating of interstellar dust grains by the

starlight and is polarized due to their preferential alignment with the GMF (Draine

2011). Dust emission is modelled as a modified black-body, Idust ∝ νdustBν(Tdust),

where Bν is the Planck function. βdust and Tdust are the spectral index and tem-

perature of the dust grains, respectively. Dust parameters also vary across the

sky as well as along the line of sight. More than one dust cloud can be present in

a single sky direction, with varying dust parameters and magnetic field orienta-

tions (Planck Collaboration et al. 2017). In polarization studies, this can result in

the cancellation/suppression of the signal as well as the rotation of the polarization

angle with frequency. This effect is known as frequency decorrelation, meaning

dust emission in different frequencies is no longer correlated. As a result, knowing

the dust emission at one frequency will not help us predict the emission at other

frequencies. Frequency decorrelation has been reported in Planck data (Pelgrims

et al. 2021) and is a serious challenge for component separation.

In the pursuit of improving the separation techniques, it is crucial to extract all

sorts of information about foregrounds. Numerous efforts are underway to inves-

tigate and harness the statistical features of Galactic emissions. Planck analysed

the intensity and polarization characteristics of various foregrounds, examining

their correlations with each other and with the GMF (Planck Collaboration et al.

2016b,d). Angular power spectrum (Cℓ) of polarized synchrotron and thermal dust
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maps are well studied. It was found that the ratio of the B-mode power spectrum

amplitude to that of E-mode power spectrum is 0.5 for thermal dust and 0.22 for

synchrotron (Planck Collaboration et al. 2020c; Martire et al. 2022). Planck also

measured the non-zero correlation between temperature and B-mode polarization¶

(CTB
ℓ ) for thermal dust. Given the non-Gaussian nature of foreground components,

higher-order correlations of these emissions are studied, such as bispectrum (Jung

et al. 2018; Rana et al. 2018; Coulton & Spergel 2019), skewness-kurtosis (Ben-

David et al. 2015; von Hausegger et al. 2019), scattering transforms (Allys et al.

2019; Regaldo-Saint Blancard et al. 2020, 2021), Minkowski functionals (Rana

et al. 2018; Hervias-Caimapo & Huffenberger 2022; Martire et al. 2023) etc.

1.3 Morphological statistics

Various tools and techniques have been developed to study the statistics of random

fields in astrophysics and cosmology. For Gaussian random fields such as CMB,

the two-point correlation function or its Fourier counterpart, the power spectrum,

encapsulates all the statistical information. Consequently, the angular power spec-

trum (Cℓ) is widely used to describe the statistical properties of the CMB field.

Mild non-Gaussianity within CMB can be captured by computing the three-point

and four-point functions (or the Fourier equivalents, bispectrum and trispectrum,

respectively). In the case of CMB, higher-order non-Gaussian terms vanish as a

result of perturbation theory. Chapter 3 contains a detailed discussion on CMB

non-Gaussianity.

As mentioned in the previous section, interstellar radiation fields and Galactic

foreground components are also characterized using these conventional statistical

tools. However, the interactions those govern the Galactic emissions are generally

¶This is a parity odd signal and is measured as zero for CMB.
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non-linear, and we do not expect that the interaction may be expressed as a

small perturbation term added to an interaction-free physical system. As a result,

foreground emissions are expected to be highly non-Gaussian, and there is a strong

need to employ methods that capture information beyond the two-point function.

The standard non-Gaussianity estimators such as bispectrum, skewness, kurtosis

and other N -point functions, when used alone, also fail to fully capture these

properties due to a lack of a priori knowledge of the true nature of these foreground

fields.

Morphological statistics such as scalar Minkowski functionals (MFs) (Minkowski

1903; Schneider 2013; Tomita 1986) are computed in real space and contain infor-

mation of all the N -point correlation functions. This makes them particularly ad-

vantageous in searches for non-Gaussianity in situations where the non-Gaussian

properties are a priori unknown and/or when the field is highly non-Gaussian.

Hence, MFs are found to be highly effective in characterizing Galactic emissions.

MFs are based on excursion set formalism. It probes the geometry and topology of

connected regions and holes for the excursion sets of the random field (Schmalz-

ing & Buchert 1997; Matsubara 2003). Betti numbers are related topological

quantities, which count the number of connected regions and holes (Chingangbam

et al. 2012; Park et al. 2013). In 2d, there are three scalar MFs: area-fraction,

contour length and genus. These MFs being scalar, are not sensitive to the di-

rectional information. Minkowski tensors (MTs) are the tensor generalizations

of MFs (Schröder-Turk et al. 2010; Chingangbam et al. 2017b). Specifically, the

contour Minkowski Tensor (CMT) is the tensor generalization of contour length

and contains the shape information and measures the anisotropy and alignment

of structures (Ganesan & Chingangbam 2017; Chingangbam et al. 2017b). Other

morphological and topological tools are shapefinders (Sahni et al. 1998), skele-

ton (Novikov et al. 2006), extrema counts (Pogosyan et al. 2011), persistent ho-

mology (van de Weygaert et al. 2013; Pranav 2021). All these quantities are

extensively used to study cosmological (Bardeen et al. 1986; Mecke et al. 1994;
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Bharadwaj et al. 2000; Matsubara 2003; Hikage & Matsubara 2012; Kapahtia et al.

2018; Goyal et al. 2020; Munshi et al. 2013)‖ and astrophysical (Henderson et al.

2017; Makarenko et al. 2018) fields.

1.4 Goals of the thesis

The main goal of this thesis is to investigate the statistical properties of various

Galactic foreground components using morphological and topological tools, ex-

tending well beyond the usual power spectrum analysis. The outcome of these in-

vestigations will deepen our understanding of Galactic foreground emissions, which

will enable us to improve the component separation in CMB experiments. We have

examined different foreground maps, including Galactic synchrotron, AME, free-

free and thermal dust, using a range of tools starting from one-point probability

distribution function (PDF), angular power spectrum, skewness-kurtosis, scalar

Minkowski functionals and Minkowski tensors. It should be noted that the scope

of the findings from our foreground analysis is not limited to CMB studies. They

are also relevant for addressing foreground challenges in other cosmological endeav-

ours, such as Epoch of Reionization (EoR) 21 cm experiments and Line Intensity

Mapping (LIM) experiments.

Listed below are the key questions addressed within this thesis.

• We begin our analysis by studying the morphology of composite random

fields, focusing on how the Minkowski functionals and other statistical prop-

erties of a composite field can be related to those of its individual constituent

fields. In real-world situations, observed data is a sum of true signal and noise

‖This list is incomplete and we recommend Matsubara & Kuriki (2020) for a more compre-
hensive compilation.
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or may contain other residual components. Galactic foregrounds are also a

sum of different emissions. By examining how the behaviour of a primary

field is affected by the presence of a secondary field, we can assess the po-

tential bias it might introduce in the final conclusions we obtain. This work

sets the stage for the discussions in the subsequent works.

• We study the nature of non-Gaussianity of the Haslam map using scalar MFs.

We then analyse the statistical isotropy (SI) of the map using Minkowski

tensors. Here, we study these features of the Haslam map at different sky

regions and angular scales. In synchrotron modelling, the fluctuations are

approximated as Gaussian distributed and statistically isotropic at small

angular scales. The main aim of this work is to verify the validity of this

approximation. We also use generalized skewness and kurtosis parameters

to explore the exact nature of non-Gaussianity.

• Motivated by our analysis with the Haslam map, we next study the mor-

phological properties of synchrotron temperature and polarization maps pro-

vided by different experiments. We use the data sets from Planck, WMAP,

BeyondPlanck and Stockert-Villa, along with the simulated foreground maps

from PySM simulations. Here, the main objective is to examine whether the

properties of synchrotron radiation are frequency-dependent and to compare

the non-Gaussian and SI nature of these observed synchrotron maps with

previous results of the Haslam map.

• We study the non-Gaussian features of foreground components such as free-

free, AME and thermal dust emission. Our particular emphasis lies in delving

deeper into the kurtosis nature evident from our synchrotron findings. For

this, we also examine the properties of some toy models — random fields

with positively skewed probability distributions. The primary question that

is being addressed in this work is whether the kurtosis nature is a universal

feature and its potential application in the small-scale modelling of different

Galactic components.
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• We present a new morphological quantity, known as total absolute curvature

(K), to study the geometry of the excursion sets of random fields. This tool

carries independent information and complements MFs in studying the non-

Gaussianity of CMB and foreground fields.

1.5 Thesis plan

The thesis is organised as follows.

• Chapter 2 contains a detailed discussion on cosmological perturbation theory

in the context of CMB and the physics of Galactic emissions. Additionally,

we provide a brief overview of the historical background and present state

of CMB experiments.

• Chapter 3 reviews the smooth random fields and the statistical tools used to

characterize them. It also includes definitions of morphological tools, MFs

and MTs and further explains the mathematical principles behind them. The

chapter discusses how these quantities can be applied to characterize various

random fields and outlines the numerical methods used in computing them.

• In chapter 4, we present our work on the morphology of composite fields,

providing an analytical estimate of how the scalar MFs of a field are affected

by the presence of noise or residual components.

• Chapter 5 investigates the non-Gaussianity and statistical isotropy of the

Haslam map using scalar MFs and MTs.

• In chapter 6, we extend the formalism developed on studying the morphol-

ogy of Haslam map to different synchrotron maps provided by WMAP and

Planck.
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• In chapter 7, we estimate the amplitude of non-Gaussianity and its nature

for different foreground components given by Planck. Our main objective of

this work is to examine if the kurtosis non-Gaussianity is a universal feature

of foreground fields or random fields in general at small angular scales.

• In chapter 8, we introduce total absolute curvature (K) and discuss its po-

tential application in studying different random fields in the universe.

• In chapter 9, we summarize our research work and discuss future directions.



Chapter 2

Physics of the CMB and Galactic

Foregrounds

In this chapter, we present a concise overview of the basic physics of CMB and

various Galactic emissions, which are crucial topics for this thesis. Section 2.1

discusses cosmological perturbation theory and inflationary physics in the context

of CMB. This section also contains a summary of the current experimental efforts

aimed at detecting the primordial features in CMB signals, which serve as the

long-term goals of the research work carried out in the thesis. Section 2.2 gives an

outline of different Galactic foregrounds, such as Galactic synchrotron, free-free,

AME and thermal dust emissions. Lastly, in section 2.3, we describe the different

methods used in CMB experiments to separate these foreground emissions and

recover clean CMB maps.
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2.1 Cosmology using CMB

2.1.1 Primordial perturbations and initial conditions

The background cosmology we have discussed so far is built upon the assumption

of the Cosmological Principle. The tiny fluctuations in the background density

that existed in the early universe got enhanced under gravity and led to the inho-

mogeneous universe we observe today. CMB anisotropies are also associated with

the density fluctuations in the early universe. As discussed earlier, we can write the

density as a background term that only depends on time and a spatially varying

fluctuation term. Mathematically, this can be expressed as ρ(x, t) = ρ̄(t)+δρ(x, t).

Similarly, the metric can be decomposed into a spatially constant term and a per-

turbed term.

The hot big bang model doesn’t explain how the density fluctuations originated in

the primordial universe. The theory of inflation offers a valuable solution to this

issue. Quantum fluctuations of the inflaton field are responsible for the generation

of density fluctuations in the early universe. Under gravity, these tiny fluctuations

were enhanced, and later, the gravitational collapse of the overdense regions gave

rise to the formation of the inhomogeneous universe we see today. The anisotropies

observed in the CMB sky are also a result of these inhomogeneities. In this sub-

section, we will provide an overview of the generation and evolution of density and

metric perturbations in the expanding universe.

Cosmological perturbations in the universe are studied using the linearized Ein-

stein equations. The linear theory is generally effective in explaining the majority

of observed fluctuations, except when these fluctuations grow and become non-

linear during the late-time epochs. Under linear approximation, the metric gµν
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is

gµν(x, t) = ḡµν(t) + hµν(x, t), (2.1)

where ḡµν is the background FLRW metric defined in eq. (1.6). By making use of

the gauge freedom, we can write the line element of the perturbed space-time,

ds2 = −(1 + 2Ψ(x, t))dt2 + a2(t) [(1− 2Φ(x, t))γµν + 2hµν ] dx
µdxν . (2.2)

Ψ and Φ are the Bardeen potentials (Bardeen 1980), which correspond to the

Newtonian potential and the perturbations in the spatial curvature, respectively.

This line element is defined in the conformal Newtonian gauge. Any metric per-

turbations can be broken down into three components: scalar, vector, and tensor.

Scalar perturbations are given by Bardeen potentials. According to the inflation-

ary theory, any vector perturbations, if they exist at all, will rapidly die out as the

universe expands. Hence, they are not considered here. hµν is the trace-less and

transverse tensor component of the perturbation, which gives rise to the primor-

dial gravitational waves from inflation. At the linear order, the Einstein equations

for scalar, vector, and tensor modes evolve independently. As a result, this helicity

decomposition proves to be highly valuable in studying the individual evolution of

each mode.

Through Einstein equation, the metric perturbation is related to the perturbations

in the energy-momentum tensor of each component as,

Tµν(x, t) = T̄µν(t) + δTµν(x, t). (2.3)

decomposing Tµν into a background component, which depends only on time and a

spatially varying perturbed term. In other words, the distribution function of dif-

ferent constituents is perturbed in the early universe, and we need the Boltzmann

equation to study the evolution of these components. Boltzmann equation takes

care of the various interactions between photons, electrons, neutrinos, protons and
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dark matter in the primordial plasma and solves how the distribution evolves with

the expanding universe. For the distribution function f of any species in the phase

space, the Boltzmann equation is

df(x, p, t)

dt
= C[f ]. (2.4)

All the possible interactions are included in the term C[f ].

Together with Einstein equation, the Boltzmann equation governs the growth of

the perturbations in the universe. By solving these coupled equations, we obtain

the transfer function, which tells us how the amplitude of perturbations at one

epoch is related to that of a later epoch. In this way, we can understand how the

initial density fluctuations grew under gravity and evolved to form the observed

distribution of matter at large angular scales, temperature anisotropies in the

CMB, etc.

The initial conditions for the perturbations were set by inflation. This phase of

rapid accelerated expansion was first proposed by Alan Guth in 1980 to solve

two major issues in the hot big bang model: horizon problem and flatness prob-

lem (Guth 1981). The horizon problem arises from the fact that the regions in

the universe, which are expected to be causally disconnected due to the finite age

of the universe, exhibit remarkable similarity in temperature. In other words, the

CMB temperature is highly uniform across the sky, but the horizon size∗ of the

universe at LSS is approximately 1◦ angular size in the sky today. The flatness

problem is related to the observation that the present-day geometry of the universe

is flat. Since k = 0 is an ideal scenario, even a tiny deviation to the flat case in the

early universe would have been amplified as it expanded, resulting in a non-zero

curvature for the universe today.

∗Horizon size is the maximum distance light could travel since the big bang and represents
the largest causally connected region.
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Inflationary cosmology resolves the horizon problem by positing that the regions

that seem disconnected today were, in fact, in causal contact before the inflationary

epoch. In this way, they got ample time to reach thermal equilibrium before being

pushed beyond each other’s horizon. Similarly, the exponential expansion during

the inflationary epoch smoothed out any tiny departure from flat geometry in the

early universe, leaving us with the observed near-perfect flatness on cosmological

scales today.

According to the simplest inflationary models, inflation was driven by the inflaton

field (ϕ). Similar to dark energy, this scalar field has to have negative pressure.

However, in this case, we cannot have accelerated expansion forever; inflation has

to stop. Therefore, we need a mechanism where the inflation terminates after a

certain point and the inflaton field decays to hot matter constituents through the

process called reheating. The slow-roll model provides a simple and effective way

to achieve this. With the background FLRW metric, the dynamics of the scalar

field are given by the Klein-Gordon equation,

ϕ̈+ 3Hϕ̇+
dV (ϕ)

dϕ
= 0, (2.5)

where V (ϕ) is the potential of the inflaton field. 3Hϕ̇ represents the Hubble

expansion, which acts like a friction term here.

For the field ϕ, the energy density and pressure are

ρϕ =
1

2
ϕ̇2 + V (ϕ) pϕ =

1

2
ϕ̇2 − V (ϕ). (2.6)

Friedmann equation for the inflaton field is

H2 ≡ 8πG

3
ρϕ =

8πG

3

[
1

2
ϕ̇2 + V (ϕ)

]
. (2.7)
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Klein-Gordon equation and the Friedmann equation are coupled, and together,

they determine the dynamics of the inflaton field.

The first condition for the slow-roll model is that the potential energy of the field

is large compared to the kinetic energy:

ϕ̇2

2V (ϕ)
≪ 1. (2.8)

This condition ensures the pressure to be negative (p ≈ −ρ) and, thus, accelerated

expansion. This is equivalent to saying that the first slow-roll parameter ϵ ≪ 1,

where

ϵ = − Ḣ

H2
=

3
2
ϕ̇2

1
2
ϕ̇2 + V (ϕ)

≪ 1. (2.9)

For the inflaton potential to slow-roll and thus the inflation to sustain for a longer

period of time, the inflaton field has to evolve slowly compared to the expansion

of the universe. This is the second condition for the slow-roll model,

η ≡
∣∣∣∣ ϕ̈

Hϕ̇

∣∣∣∣≪ 1. (2.10)

η is the second slow-roll parameter. When η is small, the Hubble friction term in

eq. (2.5) dominates, retaining inflation for an extended period. During this time,

the energy density of the inflaton field evolves very slowly. Eventually, the field

approaches the minimum of the potential, the slow roll conditions are violated,

and the energy density of inflaton begins to fall. At this point, the inflation stops,

and the energy stored in the inflaton field gets converted to matter and radiation,

marking the transition to the hot big bang era. Figure 2.1 depicts the slowly

rolling inflaton field falling into the potential well.

The quantum fluctuations in the inflaton field are primarily responsible for the

density fluctuations in the early universe. These fluctuations at the microscopic

level are arising from the quantum mechanical uncertainty principle for the vacuum
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Figure 2.1: The slowly rolling inflaton field ϕ down it’s potential V (ϕ). This
figure is adapted from David Baumann’s lecture notes.

state. Cosmological observations, from CMB and large-scale structure, tell us that

these fluctuations are nearly scale-invariant, Gaussian distributed and adiabatic.

The exponential expansion during inflation stretched out these perturbations to

cosmic scales and when the inflationary period came to an end, these primordial

fluctuations served as the initial seeds for the formation of cosmic structures.

The link between the inflation and post-inflationary universe is given by the pri-

mordial curvature perturbations R. In Newtonian gauge, R is defined in terms of

Bardeen potentials as,

R ∝ [Ψ +H−1Φ]. (2.11)

R is a gauge invariant quantity. One of the key predictions of inflation is that R is

a Gaussian random field and, hence, can be described using the power spectrum,

with Fourier modes k⃗,

⟨R(k⃗)R(k⃗′)∗⟩ = (2π)3δ(k⃗ − k⃗′)P (k), (2.12)
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where P (k) = (2π2/k3)PR(k). PR(k) is the curvature power spectrum, which can

be parametrized as,

PR(k) = AR

( k

k∗

)ns−1

. (2.13)

AR and ns are the amplitude and the spectral index of the curvature power spec-

trum, respectively. k∗ is the pivot scale, which can be chosen arbitrarily. Many of

the inflationary models predict that the primordial fluctuations are nearly scale-

invariant, implying that the ns is close to 1. Observations, such as those from

Planck, have estimated the value of the spectral index ns to be 0.964 (Planck

Collaboration et al. 2020d).

In addition to scalar perturbations, inflation also gives rise to tensor fluctuations in

the fabric of space-time. These tensor fluctuations manifest as gravitational waves,

which carry valuable information about the underlying physics driving the infla-

tionary process. Scalar perturbations led to the formation of structures. On the

other hand, tensor perturbations and the associated primordial gravitational waves

offer a unique window into the study of inflation and its associated mechanisms.

The imprint of these gravitational waves can be observed through the distinct

polarization patterns in CMB called the CMB B-modes. A primary objective of

current and upcoming CMB experiments is to detect this primordial signature. A

detailed discussion on CMB polarization and tensor B-modes is included in the

next subsection.

The two-point correlations of tensor fluctuations (h(k⃗)) can be related to the tensor

power spectrum Ph(k) as,

⟨h†(k⃗)h(k⃗′)∗⟩ = (2π)3δ(k⃗ − k⃗′)Ph(k). (2.14)

Ph(k) also follows a power law of the form:

Ph(k) = AT

( k

k∗

)nT

, (2.15)
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with AT and nT are, respectively, the amplitude and spectral index for the tensor

modes. In observations, the tensor modes are constrained by estimating the tensor-

to-scalar ratio (r), defined as,

r =
AT

AR
. (2.16)

The estimation of the r from CMB B-mode observations enables us to derive the

energy scale of inflation. A joint analysis of Planck and BICEP CMB experiments

yields r < 0.032 (Tristram et al. 2022).

For an extensive review of the various inflationary models, we recommend Martin

et al. (2014); Vazquez Gonzalez et al. (2020).

2.1.2 CMB and early universe physics

As discussed earlier, around 380,000 years after the big bang, recombination and

decoupling happened, enabling photons to free stream from the last scattering

surface. These photons now form CMB radiation, offering a valuable glimpse into

the early universe and the physics of the processes that took place in the primordial

plasma.

CMB radiation was predicted by George Gamow, Ralph Alpher, and Robert Her-

man in the late 1940s (Gamow 1948; Alpher & Herman 1948). They proposed

that if the universe originated from a hot and dense phase, then faint black body

radiation left over from that period should still be detectable today. The actual

discovery of the CMB came in 1964 with the accidental detection by Arno Penzias

and Robert Wilson at Bell Labs in New Jersey (Penzias & Wilson 1965). They

discovered an unknown background signal emanating from all directions in their

radio antennae, which was later identified as CMB radiation. The discovery of

CMB provided strong support for the big bang theory, for which the Nobel Prize
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Figure 2.2: All-sky CMB temperature map (∆T/T0) seen by Planck (Planck
Collaboration et al. 2020a).

in Physics was awarded to Penzias and Wilson in 1978. Although their measure-

ment was at a specific frequency, later studies confirmed the black body nature of

the radiation (Mather et al. 1990).

CMB is not an isotropic radiation. CMB anisotropies arising from the density per-

turbations in the early universe serve as a snapshot of the overdensities and under-

densities existing in the universe when the CMB photons started free-streaming.

As a result, these temperature fluctuations have given us a detailed picture of the

evolution of primordial fluctuations, the rich physics during and before recombi-

nation, etc.

CMB temperature fluctuations are expressed as,

Θ(n̂) =
∆T (n̂)

T0

=
T (n̂)− T0

T0

, (2.17)

where T0 is the background temperature and n̂ is the sky direction. The typical

value of fluctuations is of the order 10−5. Figure 2.2 shows the all-sky map of tem-

perature fluctuations as measured by the Planck satellite (Planck Collaboration

et al. 2020a).
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On the sphere, Θ(n̂) can be decomposed into spherical harmonics,

Θ(n̂) =
∞∑
ℓ=2

ℓ∑
m=−ℓ

aℓmYℓm(n̂). (2.18)

ℓ = 1 (dipole) is excluded here as the dipole is dominated by the contribution

arising from the motion of the Earth with respect to the CMB rest frame, which

is accurately subtracted in the CMB data analysis†.

Owing to the primordial density fluctuations being Gaussian distributed, CMB

temperature fluctuations are also expected to be Gaussian random fields. Thus,

the statistics of CMB fluctuations can be fully described using the two-point cor-

relation functions (C(θ)) and its Fourier equivalent, angular power spectrum (Cℓ).

C(θ) ≡ ⟨Θ(n̂)Θ(n̂′)⟩, (2.19)

where cos(θ) ≡ n̂.n̂′. Similarly for the multipole moments aℓm,

⟨aℓma∗ℓ′m′⟩ = Cℓδℓℓ′δmm′ . (2.20)

Cℓ is the angular power spectrum. Kronecker deltas in the above equation stems

from the underlying assumption of homogeneity and isotropy.

Given the aℓms of an observed temperature field Θ(n̂), we can write an estimator

for Cℓ as,

Ĉℓ =
1

2ℓ+ 1

∑
m

|aℓm|2, (2.21)

such that ⟨Ĉℓ⟩ = Cℓ. The error associated with this estimator is then,

∆Cℓ

Cℓ

≡

√
⟨(Cℓ − Ĉℓ)2⟩

Cℓ

=

√
2

2ℓ+ 1
. (2.22)

†Our solar system is moving relative to the CMB frame. As a result, there exists a non-zero
dipole moment of magnitude 3.36 mK in the observed data (Kogut et al. 1993). This dipole
component is accurately measured and subtracted during CMB analysis.
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Figure 2.3: The observed CMB temperature angular power spectrum (Dℓ =
ℓ(ℓ+ 1)Cℓ/2π) as observed by Planck, along with the associated error bars and
the best fit Λ-CDM theoretical predictions (Planck Collaboration et al. 2014).
The red dots indicate the data, while the green line denotes the theoretical
values. The error bars are large for the lower ℓ values due to cosmic variance.
This figure is adapted from Durrer (2015).

This error is called cosmic variance, which dominates at the lower values of ℓ (large

angular scales). It arises due to the fact that we have only one observable universe

to measure, limiting our ability to completely capture the statistical nature of

the fluctuations. The observed CMB angular power spectrum from the Planck is

shown in figure 2.3, along with the error bars and the best fit theoretical Λ-CDM

model.

To explore the primordial physics contained in the CMB, it is important to un-

derstand how the observed angular power spectrum of the CMB (Cℓ) is related to

the power spectrum of the initial curvature perturbations (PR(k)). This relation

is given as

Cℓ ≡
∫

d ln kΘ2
ℓ(k)PR(k). (2.23)

Here, Θℓ(k) denotes the transfer function, which encapsulates the evolution of
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primordial perturbations, the decoupling of photons at the last scattering surface

(LSS), and the projection of inhomogeneities in the photon distribution functions

onto the observable sky. Consequently, this process involves two essential steps:

first, establishing a connection between the observed features in the sky and the

fluctuations at the LSS, and then, relating these fluctuations to the initial curva-

ture perturbations.

The temperature fluctuations observed today along the line of sight are related to

the physical processes happening at the LSS as

δT

T0

(n̂) =

(
1

4
δγ +Ψ

)
∗

− (n̂.vb)∗ +

∫ η0

η∗

dη (Φ′ +Ψ′). (2.24)

∗ denotes the time corresponding to the last scattering surface. Note that the

integration is with respect to conformal time defined as dη = dt/a(t) and ′ denotes

the derivative with respect to time.

In the above expression, there are three contributors to the temperature fluctua-

tions seen today:

• SW – The first term in the bracket is called the Sachs-Wolfe term. This

includes the intrinsic temperature fluctuations at the LSS, along with the

temperature perturbations induced due to the gravitational redshift of the

photons, denoted as Ψ∗.

• Doppler – Doppler fluctuations arise from the variations in the bulk velocity

of electrons at the LSS. When the photons scatter off these electrons, they

get additional temperature fluctuations due to the Doppler effect.

• ISW – This term corresponds to the Integrated Sachs-Wolfe (ISW) effect,
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accounting for the additional gravitational redshift the CMB photon encoun-

ters while travelling through evolving gravitational potentials after recombi-

nation. When a photon enters a potential well, it gains energy. However, if

the potential changes with time before the photon leaves the well, it won’t

lose all the energy it got while entering, resulting in a net gain of the energy.

This late-time effect contributes to the anisotropies in the CMB and is more

prominent in the dark-energy-dominated era.

The detailed evaluation of the transfer function (Θℓ(k)) is beyond the scope here.

For a comprehensive discussion, we recommend Baumann (2022).

The large angular scales (multipole ℓ < 100) CMB fluctuations were coming from

the modes that were outside the horizon during the recombination. As a result,

these fluctuations directly probe the inflationary perturbations. In this regime,

the fluctuations are dominated by the Sachs-Wolfe term,

δT

T
(n̂) ∼

(1
4
δγ +Ψ

)
∗

=
1

3
Ψ∗ =

1

5
R. (2.25)

This is evaluated assuming adiabatic initial conditions. The transfer function for

the large-scale Sachs-Wolfe limit is,

ΘSW
ℓ (k) =

1

5
jℓ(kχ∗), (2.26)

where jℓ are the spherical Bessel function and χ∗ corresponds to each spatial point

on the last scattering surface. The power spectrum (eq. (2.23)) now becomes,

CSW
ℓ ≡

∫
d ln k PR(k)jℓ(kχ∗), (2.27)

and substituting PR(k) = AR(k/k∗)
ns−1, we finally get,

ℓ(ℓ+ 1)

2π
CSW

ℓ ≡ constant. (2.28)
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This implies that the scale-invariance in the primordial curvature power spectrum

can be directly translated to the constancy of the CMB angular power spectrum

at large angular scales. The flat region observed for low multipoles in figure 2.3

corresponds to the Sachs-Wolfe regime. These modes are totally unaffected by the

interactions in the primordial plasma and provide a direct probe of inflationary

physics.

Further small scales, the anisotropies in the CMB sky are determined by the dy-

namics of the photon-baryon system in the primordial plasma. These interactions

give rise to acoustic oscillations or pressure waves, i.e. the regions of higher density

experienced greater gravitational attraction, causing compression and enhancing

the pressure waves. Conversely, regions of lower density experienced rarefaction.

These sound waves, also called Baryon Acoustic Oscillations (BAO), at the decou-

pling left distinct imprints on the CMB power spectrum as acoustic peaks. In this

regime, the transfer function is obtained by numerically solving the Boltzmann

equation, incorporating various physical processes such as photon diffusion and

damping, Compton scattering, acoustic oscillations, etc.

The position and heights of acoustic peaks provide valuable information about

the fundamental properties of the universe. The position of the first peak is di-

rectly related to the geometry of the universe (flat, positively curved or negatively

curved). The observed position of the first peak (ℓ ∼ 200, as shown in figure 2.3) is

consistent with flat geometry. Baryon, dark matter and dark energy densities can

influence the height of the first peak. The relative heights of different peaks, specif-

ically the first and the third, give information about the baryon density. Beyond

the peaks, the power spectrum exhibits a damping tail (known as Silk damping),

where the amplitude of fluctuations gradually falls with higher multipole moments.

The damping tail carries information about the diffusion of photons, as well as the

sound horizon and free-streaming of baryons and dark matter. Analysing the

damping tail tells us the total matter density and the properties of neutrinos.
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CMB is linearly polarized. Thomson scattering of electrons and ions with photons

at the LSS creates distinct polarization patterns in the presence of quadrupole

anisotropies (Coulson et al. 1994; Hu & White 1997). However, due to the tight

coupling of electrons and photons in the pre-recombination plasma, the generated

quadrupole is small, resulting in a relatively low polarization fraction for the CMB,

approximately 10%.

Linear polarization of CMB is expressed using Q and U Stokes parameters. These

parameters are components of polarization matrix P , given as,

P =

Q U

U −Q

 . (2.29)

The quantity P exhibits spinor-like properties (spin-2), implying that Q and U are

coordinate-dependent quantities (Seljak & Zaldarriaga 1997). The transformation

of Q and U under rotation with angle θ isQ′

U ′

 =

 cos 2θ sin 2θ

−sin 2θ cos 2θ

Q

U

 , (2.30)

or the linear combination of Q and U transform as,

(Q± iU)′(n̂) = e∓2iθ(Q± iU)(n̂). (2.31)

On the sphere, we can express these quantities with spin-2 spherical harmonics as

the basis,

(Q± iU)(n̂) =
∑
ℓm

±2aℓm ±2Yℓm(n̂). (2.32)

To avoid the ambiguity associated while dealing with coordinate-dependent quanti-

ties, we define two scalar quantities — polarization E and B modes (Kamionkowski

et al. 1997; Zaldarriaga 2001). These modes are, respectively, the gradient and

curl components of linear polarization. Using the spin-2 multipole moments, we
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Figure 2.4: Polarization patterns for E and B modes. The figure is taken
from Baumann et al. (2009).

get

aEℓm = −[+2aℓm +−2 aℓm]/2, aBℓm = i[+2aℓm −−2 aℓm]/2, (2.33)

Using these aℓms, we can obtain the E and B mode maps‡ as

E(n̂) =
∑
ℓm

aEℓmYℓm, B(n̂) =
∑
ℓm

aBℓmYℓm. (2.34)

This decomposition of the polarization matrix into scalar components is similar

to the decomposition of a vector into the gradient of a scalar and the curl of a

vector (Helmholtz’s theorem). Under parity transformation (n̂ → −n̂), B-mode

component flips the sign, while the E-mode component, like temperature, remains

invariant. Figure 2.4 shows the polarization patterns for E and B modes.

‡This should not be confused with electric (E) and magnetic (B) fields in electrodynamics.
However, the similarity with them is that the E and the E-mode fields are curl-free, while the
B and the B-mode fields are divergence-free.



Chapter 2: CMB and Galactic Foregrounds 44

Figure 2.5: CMB TT , EE and BB power spectra (Dℓ = ℓ(ℓ + 1)Cℓ/2π) for
the best-fit cosmological parameters from Planck (Planck Collaboration et al.
2020a) and two different values of r. The lensing BB power spectrum (dashed
line) is also shown for comparison.

For temperature and polarization fields [T,E,B], we can define the auto and cross

angular power spectra,

⟨aTℓma∗Tℓ′m′⟩ = CTT
ℓ δℓℓ′δmm′ , ⟨aTℓma∗Eℓ′m′⟩ = CTE

ℓ δℓℓ′δmm′ ,

⟨aEℓma∗Eℓ′m′⟩ = CEE
ℓ δℓℓ′δmm′ , ⟨aTℓma∗Bℓ′m′⟩ = CTB

ℓ δℓℓ′δmm′ , (2.35)

⟨aBℓma∗Bℓ′m′⟩ = CBB
ℓ δℓℓ′δmm′ , ⟨aEℓma∗Bℓ′m′⟩ = CEB

ℓ δℓℓ′δmm′ .

Due to the odd parity of the B-mode and even parity for [T,E] modes, CTB
ℓ

and CEB
ℓ are expected to be zero. Figure 2.5 shows the theoretical spectra for

temperature and polarization maps.

Primordial density fluctuations are the underlying source of these polarization
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patterns. Like the temperature fluctuations, the scalar density perturbations are

responsible for the E-mode polarization. This is due to the rotational symmetry

in the scalar plane-wave perturbations. The quadrupole anisotropy arising from

the velocity gradient in the photon-baryon fluid generates E-mode polarization

patterns. As a result, the acoustic oscillations of E-mode spectrum are out of

phase with those of temperature.

Tensor fluctuations during inflation produce non-zero E and B modes. In other

words, B-mode signals are created only via tensor perturbations or primordial

gravitational waves. Hence, the detection of CMB B-modes serves as a distinct

signature for the presence of metric perturbations in the early universe. In CMB

experiments, the detection of B-mode is quantified by r, which represents the

relative amplitude of tensor fluctuations compared to scalar perturbations during

the inflationary period. The value of r can be directly related to the slow-roll

parameters ϵ and η and thus, provides the energy scale of inflation,

Einf ≡ (3H2M2
Pl)

1/4 ≃
( r

0.01

)1/4
× 1016GeV, (2.36)

where MPl is the Planck mass. Thus, the detection of primordial tensor modes

in the CMB provides definite proof of inflation. More importantly, tensor fluctu-

ation amplitude is very sensitive to different high-energy mechanisms that drove

inflation. As a result, the measurement of r provides crucial constraints on the

physics of inflation and the nature of quantum gravity.

Figure 2.5 shows the B-mode power spectrum for two different r values. It should

be noted that via gravitational lensing of CMB photons, scalar fluctuations also

produce B-mode polarization. As the CMB photons travel through large-scale

structures such as galaxies and clusters, gravitational lensing rotates the E-mode

signals resulting in the generation of B-mode polarization. These B-modes from
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lensing are less dominant at degree angular scales where primordial B-modes dom-

inate. Observational efforts are still ongoing to measure the primordial B-mode

signal and the estimation of the r. The joint measurement from the Planck and

BICEP experiments sets an upper limit for r at r < 0.032 (Tristram et al. 2022).

There are other sources that affect the CMB anisotropies on its path towards us

after recombination, creating secondary anisotropies. Reionization of the neutral

hydrogen by the photons from the first luminous sources in the universe generates

free electrons that interact with the CMB radiation. This happened around z ∼ 10

and resulted in the suppression of temperature fluctuations and the enhancement

of polarization E-modes (Wise 2019). The contribution of the ISW effect was

already discussed; the additional anisotropies generated when the CMB photon

travels through a gravitational potential that evolves with time. This effect is

dominant when the universe gets dark energy dominated, around z ∼ 2 and has

been detected by Boughn & Crittenden (2005). When the CMB photons travel

through the matter distribution such as galaxies and galaxy clusters, they expe-

rience gravitational lensing (Lewis & Challinor 2006). This lensing effect leads to

small-scale anisotropies in the CMB temperature and polarization patterns, pro-

viding insights into the distribution of matter in the universe. Inverse Compton

scattering of the fast-moving electrons in the intergalactic medium (IGM) with

the CMB photons distorts the CMB black body spectrum to higher frequencies

and creates additional temperature fluctuations (Sunyaev & Zeldovich 1970). This

phenomenon is called the Sunyayev-Zeldovich effect and is useful for exploring the

distribution of galaxy clusters and the physics of IGM.

2.1.3 Status of CMB experiments

Since the first detection of CMB by Penzias & Wilson (1965) at the Bell laboratory,

there have been several efforts to extract the wealth of information microwave
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Figure 2.6: A comparative illustration showing the angular resolutions of
CMB space telescopes: COBE, WMAP, and Planck. This figure is taken
from Vazquez Gonzalez et al. (2020).

background encodes about the early universe, including the verification of the

true black body nature of the radiation and finding the anisotropies in the CMB

sky.

The far infrared absolute spectrometer (FIRAS) instrument onboard the cosmic

background explorer (COBE) satellite, made the first accurate estimate of the

CMB black-body spectrum (Mather et al. 1990). FIRAS measured the CMB

temperature with remarkable precision as (Fixsen 2009),

T0 = 2.72548± 0.00057K. (2.37)

The temperature anisotropies in CMB were discovered by the COBE Differential

Microwave Radiometer (DMR) on an angular scale of 7◦ (Smoot et al. 1992). For

these two major milestones in CMB science, George Smoot and John Mather, the

lead scientists of these two experiments, were awarded the Physics Nobel Prize in

2006.

Inspired by these results, many balloon and ground-based experiments explored
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the anisotropies in the CMB to further small angular scales and the acoustic

peaks in the CMB power spectrum. The first peak in the power spectrum was

first measured by BOOMERanG (Mauskopf et al. 2000) and MAXIMA-1 (Hanany

et al. 2000) experiments, demonstrating that the geometry of our universe is flat,

rather than curved. DASI telescope, located at the South Pole, detected the second

and third peaks and subsequently measured the CMB E-mode polarization signal

for the first time (Kovac et al. 2002). POLARBEAR experiment directly observed

the CMB B-mode polarization signal resulting from the gravitational lensing of

the E-mode polarization (Polarbear Collaboration et al. 2014).

After COBE, two space telescopes dedicated to CMB science were the WMAP

and Planck. WMAP stands for Wilkinson Microwave Anisotropy Probe. It had

five frequency bands (23 − 94 GHz). Launched in 2001, it observed the sky for

the next nine years. The telescope made very precise CMB temperature and

polarization maps with arcminute resolution and measured the power spectrum

till the multipole range of ℓ = 1000. This marked the beginning of precision

cosmology, establishing a solid foundation for the six-parameter Λ-CDM model,

the so-called standard model for big bang cosmology (Hinshaw et al. 2013a).

Following this, the Planck mission by the European Space Agency (ESA) carried

out a detailed investigation of the CMB anisotropies, looking further at small

angular scales than WMAP. An illustration in figure 2.6 presents a comparison

of the angular resolutions of the three CMB space telescopes: COBE, WMAP,

and Planck. The wide frequency coverage of Planck, spanning from 30 GHz to

857 GHz, provided a significant advantage in mitigating the contamination from

the foreground emissions. With its highly sensitive bolometer and radiometer

detectors, Planck attained exceptional precision in measuring polarization signals.

Planck results show improved agreement with the WMAP findings of cosmological

parameters, with smaller error bars (Planck Collaboration et al. 2020a). The

temperature and polarization power spectra as measured by Planck, are shown in
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Figure 2.7: The CMB angular power spectrum obtained using different ex-
periments (Planck Collaboration et al. 2020a). The last row shows the power
spectrum for the CMB lensing potential Dϕϕ

ℓ .

figure 2.7, together with the results from other CMB experiments.

There are several ongoing ground-based experiments dedicated to measuring the

CMB anisotropies. BICEP telescope in the South Pole is the first targeted ex-

periment to detect primordial B-modes (Keating et al. 2003). In 2014, BICEP2
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Collaboration et al. (2014) claimed the first detection of primordial B-mode polar-

ization with r = 0.2+0.07
−0.05. Further analysis, using data from Planck, demonstrated

that the excess r value measured by BICEP2 was a result of contamination from

Galactic dust emissions (Ade et al. 2015). Ongoing efforts to detect B-mode

signals continue at the south pole site through missions such as the updated BI-

CEP3/Keck, POLARBEAR, CLASS, etc. (Chang et al. 2022).

Other important ground-based experiments are the Atacama Cosmology Telescope

(ACT) located in the Atacama desert, Chile and the South Pole Telescope (SPT)

situated in Antartica (Thornton et al. 2016; Balkenhol et al. 2023). These tele-

scopes are designed to measure the CMB anisotropies at the scale of arcminutes.

They are able to study the small-scale features in the CMB, such as the Sunyaev-

Zeldovich effect and gravitational lensing. In this way, these experiments provides

further insights into the physics of galaxy clusters and the evolution of the uni-

verse at smaller angular scales. By conducting cross-correlation studies with the

galaxy surveys and other observations in the nearby universe, these telescopes

have yielded improved estimates on the dark energy equation of state, Hubble

parameter, properties of dark matter, the sum of neutrino masses etc. (Qu et al.

2023; Kitayama et al. 2023).

The upcoming LiteBIRD satellite, a joint project of the Japanese Space Agency

(JAXA) and National Aeronautics and Space Administration (NASA), is aimed

at measuring the primordial B-mode signal from inflation, with δr < 0.001 (Mat-

sumura et al. 2014; Allys et al. 2023). There are ongoing efforts to increase the

sensitivity of ground-based telescopes including the South Pole Observatory and

the Simons Observatory (Ade et al. 2019). Another promising future endeavour,

CMB-S4 encompasses a wide range of scientific objectives within four key themes:

exploring primordial gravitational waves and inflation, unravelling the mysteries

of the dark universe, mapping the distribution of matter in the cosmos, and ob-

serving the time-variable millimetre-wave sky. Classified as a "Stage 4" CMB
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experiment, it is planned to have 500,000 detectors and an order of magnitude

higher sensitivity than all previous generation detectors (Abazajian et al. 2019).

To ensure effective component separation, it is crucial to have dedicated missions

specifically focused on studying foreground emissions. Increasing the spectral cov-

erage at GHz frequencies, where synchrotron, free-free and AME dominate, can

mitigate the complications associated with low-frequency foregrounds. QUIJOTE

experiment is one such mission, observing the sky at the frequency bands 10− 40

GHz and providing us with high-sensitive temperature and polarization all-sky

maps at degree-angular scales (Rubino-Martin et al. 2023). At 5 GHz, the C-

Band All Sky Survey (CBASS) is designed for preparing an all-sky map that can

characterize the low-frequency foreground components (Harper et al. 2022). At 2.3

GHz, the S-band Polarization All-Sky Survey (S-PASS) prepared the first map of

polarized radio emission in the southern sky using the Parkes radio telescope (Car-

retti et al. 2019).

2.2 Diffuse foreground contamination

In this section, we will provide an overview of the physics underlying different

Galactic foreground emissions. Also, we will describe the parametric models con-

sidered for the foreground signals that go inside the component separation pipelines

in the CMB experiments. For an in-depth review of foregrounds, see Dickinson

(2016).
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2.2.1 Galactic synchrotron

Relativistic electrons interacting with magnetic fields in the Galaxy emit syn-

chrotron radiation. Cosmic rays (CR), which include relativistic electrons, arrive

at our Galaxy from all directions. Their interaction with the magnetic field in the

Galaxy results in synchrotron emission roughly in the frequency range of 20 MHz

to 100 GHz. The intensity of the synchrotron emission is related to the strength

of the magnetic field and the number density of CR electrons, both of which vary

with respect to direction. As a consequence, the intensity of Galactic synchrotron

emission shows variations across the sky.

Let the energy distribution of relativistic electrons be given by the power law form

Ne(E)dE ∝ E−pdE, (2.38)

where p is the index which in this case depends on the CR composition. Let

Isync(n̂, ν) denote the intensity of synchrotron emission in sky direction n̂, at fre-

quency ν. Let B⊥ be the magnitude of the magnetic field perpendicular to the

line-of-sight radial coordinate r. Then Isync(n̂, ν) can be related to B⊥ as

Isync(n̂, ν) ∝ νβs

∫
δrB−βs+1

⊥ (n̂). (2.39)

The spectral index (βs), which is related to p as βs = −(p−1)/2, shows variations

in the sky given the difference in the strength of Galactic magnetic field and

the CR distribution along the line-of-sight (Westfold 1959; Rybicki & Lightman

1985). The spectrum also exhibits steepening at higher frequency bands due to

the radiative losses and the ageing effects of CR electrons, and the presence of

multiple components (Kogut 2012; Orlando & Strong 2013).

Radio telescopes used in sky surveys do not measure Isync directly. Rather, what
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is measured is the brightness temperature Tsync which is related to Isync as Tsync =

Isync/ν
2. Sky surveys to obtain Tsync(n̂, ν) have been conducted at a number of

radio frequencies. Of these, the Haslam map is widely used in the CMB component

separation pipelines. Remazeilles et al. (2015) has reprocessed the original version

of the Haslam map. Figure 2.8 (top panel) shows this cleaned version of the

Haslam map. In this frequency range and in terms of brightness temperature,

spectral index (βs) is −2.7± 0.12 (Platania et al. 2003). This low-frequency radio

map is free from other interstellar radiation fields, such as the free-free and spinning

dust emissions, which makes it an ideal synchrotron intensity map for parametric

component separation techniques.

Due to their interaction with the Galactic magnetic field, synchrotron emission is

highly polarized, with theoretical estimates showing about 70% polarization effi-

ciency (Rybicki & Lightman 1985). However, at frequencies below approximately

5 GHz, mainly near the Galactic plane, depolarization effects such as Faraday

rotation become dominant, leading to a decrease of the polarization fraction to

approximately 20% (Carretti et al. 2019). Figure 2.8 (bottom panel) shows the

synchrotron polarization amplitude map given by Planck (Planck Collaboration

et al. 2020c).

Several studies in the literature focus on large-scale spatial fluctuations of syn-

chrotron emission. The spatial variation of the spectral index, which is important

to understand the morphology of synchrotron emission at frequencies relevant for

CMB experiments, is studied in Miville-Deschênes et al. (2008); Fuskeland et al.

(2021). Polarization properties of the filamentary structures in the synchrotron

map are studied using Haslam map and WMAP low-frequency channels (Vidal

et al. 2015). The spatial correlations are studied using the power spectrum for

both intensity and polarization maps (Baccigalupi et al. 2001; Burigana et al.

2006; La Porta et al. 2008; Planck Collaboration et al. 2020c; Martire et al. 2022).

Many of these works have used the frequency dependence of the power spectrum
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Figure 2.8: Top: All-sky Haslam 408 MHz synchrotron map reprocessed by
Remazeilles et al. (2015). Bottom: Synchrotron polarization amplitude as mea-
sured by Planck (Planck Collaboration et al. 2020c).

(Cℓ ∝ ν2βs) to estimate the synchrotron spectral index and also calculated the cor-

relations between synchrotron and thermal dust emissions (La Porta et al. 2008;

Martire et al. 2022; Planck Collaboration et al. 2020f; Krachmalnicoff et al. 2018).

The angular features carry a wealth of information regarding the properties of

the interstellar medium and the structure of the Galactic magnetic field (Mertsch

& Sarkar 2013). Cho & Lazarian (2010) analysed how the angular spectrum of

synchrotron emission is related to the MHD turbulence in the interstellar medium.
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Lazarian & Pogosyan (2012) carried out extensive theoretical calculations to ex-

plain the observed correlations of synchrotron fluctuations in terms of the CR

electron spectra and the axisymmetric nature of the magnetic turbulence. Non-

Gaussianity and other higher-order statistical features of synchrotron temperature

and polarization maps are studied in Ben-David et al. (2015); Rana et al. (2018);

von Hausegger et al. (2019); Rahman et al. (2021); Martire et al. (2023).

2.2.2 Free-free emission

Due to the scattering and deceleration of free electrons by ions and other charged

particles in the ionized regions of the interstellar medium, free-free emission is

produced. This radiation is also known as thermal bremsstrahlung. The H-α line

emission serves as a valuable tracer of free-free radiation since both originate from

the HII regions of the ISM. The spectrum of free-free radiation is well understood.

In the optically thin regime, which is typically above a few GHz, the spectral index

remains consistent at βf = −2.1, with minimal dependence on electron temper-

ature. As the frequency increases towards 100 GHz, the spectrum undergoes a

slight steepening, still maintaining a spectral index of βf = −2.13. The similarity

of the free-free spectrum with that of synchrotron and AME poses challenges in

component separation. However, H-α templates are helpful tools for effectively

distinguishing and separating free-free signals in CMB experiments (Dickinson

et al. 2003).

The free-free emissivity is given as,

jff,ν =
8

3

(
2π

3

)1/2

gff,i(ν, Te)
e6

m2
ec

3

(
me

kTe

)1/2

e−hν/kTeneZ
2
i ni, (2.40)

where gff,i(ν, T ) is the Gaunt factor for free-free transitions that takes care of the

quantum mechanical effects and Te is the electron temperature (Draine 2011).
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Due to the inherent randomness and isotropic nature of Thomson scattering, it

is expected that the polarization of the free-free emission is close to zero. Using

WMAP maps, Macellari et al. (2011) showed that the degree of polarization of

free-free emission is less than 3% (with 95% confidence level). In this way, free-free

emission is unlikely a significant foreground for CMB polarization studies.

2.2.3 Thermal dust emission

Interstellar dust grains get heated up by absorbing starlight and emit radiation in

microwave and infrared wavelengths. The grains are made up of silicates, graphites

and Polycyclic Aromatic Hydrocarbons (PAHs), and exhibit a typical temperature

of 20 K (refer Draine (2003) for a detailed review).

The observed spectrum of thermal dust emission is modelled as a modified black-

body (MBB, also known as greybody) and is given as,

Iν = νβdBν(Td), (2.41)

where νβd represents the spectral dependence on the dust emissivity and Bν is the

Planck function. The dust spectral index βd is approximately 1.6. However, this is

a simplified model, assuming a single component of the dust grain. In reality, dust

composition is more complex, with multiple dust clouds exhibiting varying prop-

erties across the sky as well as along the line of sight. More sophisticated models

have been developed to address this by adopting MBB spectral laws with multiple

components (Meisner & Finkbeiner 2015; Hensley & Bull 2018). Moment expan-

sion techniques are also implemented to better remove dust foregrounds (Chluba

et al. 2017; Remazeilles et al. 2021).
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Figure 2.9: Thermal dust polarization amplitude provided by Planck (Planck
Collaboration et al. 2020c).

Figure 2.10: Galactic magnetic field lines traced by the polarized dust emission
from Planck (Planck Collaboration et al. 2016a).

Dust grains with aspherical shapes exhibit differential absorption of starlight, re-

sulting in the emission of radiation predominantly along the long axis. The short

axis of these grains aligns efficiently with the Galactic magnetic field and gives

rise to a net polarization. The polarization fraction of thermal dust emission is

estimated to be significantly high, reaching values up to 20% at high Galactic

latitudes (Planck Collaboration et al. 2020c). Figure 2.9 shows the all-sky map

of thermal dust polarization amplitude (top panel) from Planck, along with the

magnetic field lines (bottom panel) traced by it.
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The statistical properties of dust emission are well studied at the power spectrum

level. Planck has measured the power spectrum of polarization E- and B- modes

of dust, finding that the amplitude of E-mode is twice that of B-mode. Also,

Planck has detected a non-zero TB power spectrum, shedding light on the parity-

violating physics involved in the mechanism of emission (Planck Collaboration

et al. 2020f). Coulton & Spergel (2019); Jung et al. (2018) calculated the angular

bispectrum of Planck thermal dust maps to estimate the level of non-Gaussianity

and how it can bias the detection of primordial non-Gaussianity in the CMB.

Skewness and kurtosis of polarized dust maps were studied by von Hausegger

et al. (2019). Higher-order correlations were studied using wavelet transforms and

wavelet phase harmonics (Regaldo-Saint Blancard et al. 2020, 2023). Machine

learning methods were also implemented to characterize further the properties of

thermal dust emission (Aylor et al. 2020; Krachmalnicoff & Puglisi 2021; Thorne

et al. 2021).

2.2.4 Anomalous microwave emission

The Anomalous Microwave Emission (AME) is a Galactic emission that peaks in

the microwave frequencies between 10− 60 GHz and has strong correlations with

thermal dust emission (Dickinson et al. 2018). It was detected recently by Kogut

et al. (1996); Leitch et al. (1997). The origin of this emission is still a topic

of research, with the most plausible explanation that the rapidly spinning ultra-

small dust grains with non-zero dipole moment emit electric dipole radiation at

microwave ranges. These dust grains rotate at GHz frequencies, and hence, the

emission is also called spinning dust emission (Draine & Lazarian 1998a,b). An-

other mechanism proposed to explain AME is magnetic dipole radiation, which

is caused by the thermal fluctuations of the magnetization of interstellar dust

grains (Draine & Lazarian 1999). In this case, the emission is called magnetic

dust emission.
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Figure 2.11: Emissivity of spinning dust as a function of frequency across
different phases of the interstellar medium, generated using the SpDust2 code.
We see that the emissivity strength, as well as the peak frequency, vary for
different interstellar environments, with higher values in dense molecular clouds
and photo-dissociation regions (PDR). The plot is taken from Dickinson et al.
(2018).

There are several studies focused on determining the spectra of spinning dust

emission by considering the size distribution of the grains, their electric dipole

moments, rotation rates etc. (Draine & Lazarian 1998b; Ali-Haimoud et al. 2009;

Silsbee et al. 2011). Figure 2.11 shows the variation of spinning dust emissivity

with frequency for different phases of the interstellar medium, prepared using the

widely used SPDust2§ code. The plot is adapted from Dickinson et al. (2018). The

Planck 2015 analysis assumes two spinning dust components with different peak

frequencies to obtain a better parametric fit for the observed data. Here, the peak

frequency of one of the components varies spatially. By fitting the observed data

with the models based on the SpDust2 code, Planck results provide the full-sky

maps for AME (Planck Collaboration et al. 2016b).

§http://cosmo.nyu.edu/yacine/spdust/spdust.html

http://cosmo.nyu.edu/yacine/spdust/spdust.html
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The polarization of the spinning dust emission is expected to be small, for the

lack of sufficient alignment of the grains with the ambient magnetic field. Draine

& Hensley (2016) has shown that the alignment of the dust grains is impacted

by the quantum suppression of dissipation, which results in a negligible degree

of polarization. On the other hand, if the AME is dominated by magnetic dust

emission, the polarization fraction is expected to be significantly higher, up to

30% (Draine & Lazarian 1999; Draine & Hensley 2013).

Most of the observational studies of AME support the theoretical predictions of

the low-level polarization of spinning dust emissions. QUIJOTE survey, along

with Planck and WMAP, estimated upper limits for polarization fraction in the

molecular complex W43r as 0.39, 0.52 and 0.22% at frequencies 16.7, 22.7, and

40.6 GHz, respectively (Génova-Santos et al. 2016). In the Perseus region, Planck

Collaboration et al. (2016d) found a polarization fraction less than 1.6%. The

all-sky analysis using WMAP data sets by Macellari et al. (2011) obtained an

upper limit of 5%. It is important to note that neglecting even 1% of AME polar-

ization can lead to a non-negligible bias in the accurate estimation of r for CMB

B-mode experiments (Remazeilles et al. 2016). This underscores the necessity

of obtaining more stringent limits on AME polarization through low-frequency

observations (Harper et al. 2022; Rubino-Martin et al. 2023).

2.3 Component separation techniques

Based on the earlier discussions, it is evident that foreground emissions from our

Galaxy, as well as other sources, present significant challenges in capturing subtle

features in CMB signals. To address this, component separation techniques are

employed in CMB experiments to distinguish and subtract foregrounds so as to

obtain clean CMB maps (Tegmark & Efstathiou 1996). The total emission at each
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pixel (n̂) on the sky at a specific frequency, ν, is given as,

y(ν, n̂) =
∑
c

ac(ν, n̂)sc(n̂) + n(ν, n̂). (2.42)

Here, c denotes different astrophysical components, ac is the spectral response

of each component, and sc is the amplitude of the components. This is called

the linear mixture model of component separation. Generalizing this for different

frequencies (or different detectors), we can express the given data in the matrix

form at each pixel as,

Y = AS +N, (2.43)

where S is the column matrix containing the amplitudes of all the components,

and N is the column matrix for the noise element at each frequency. The matrix

A, known as the mixing matrix, comprises the spectral information of distinct sky

components. Our main objective is to derive the sky components S, with a special

interest in CMB, from the given data Y . The idea of component separation, then,

boils down to the inversion of this linear system in order to isolate the sky com-

ponents S (Delabrouille & Cardoso 2009). In this regard, various methodologies

have been developed, broadly classified as blind methods and non-blind methods.

Blind methods are implemented assuming minimum prior information of each fore-

ground component, and require the knowledge of the frequency spectrum of the

signal of interest, in this case, the CMB spectrum. This means that the knowl-

edge of the foreground components in the mixing matrix A is not crucial in these

methods. Moreover, blind methods consider the statistical differences between

CMB and foregrounds, such as CMB is Gaussian while foreground fluctuations

are non-Gaussian in general. Conversely, non-blind methods rely on using the

spectral features of each foreground component. This implies that these meth-

ods necessitate the availability of a fully parametrized mixing matrix containing

information on all the foreground components. In the following subsections, we

provide an overview of the major parametric, blind, and semi-blind methods used
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in the WMAP and Planck CMB experiments. For more details, refer to the works

of Bennett et al. (2003); Delabrouille & Cardoso (2009); Planck Collaboration

et al. (2020c).

2.3.1 Commander algorithm

Commander is a Bayesian parametric component separation method based on Monte

Carlo and Gibbs sampling techniques (Eriksen et al. 2004a, 2008). It involves fit-

ting an explicit parametric model, which incorporates cosmological, astrophysical,

and instrumental parameters, to the observations by exploring the posterior dis-

tribution.

Commander framework is one of the important foreground separation algorithms

implemented in Planck analysis. Given the data d, our goal is to estimate the

CMB power spectrum (Cℓ), amplitudes (sc) and the spectral parameters βc of dif-

ferent foreground components, instrumental parameters etc., which are collectively

represented as θ. This is achieved in the standard Bayesian way by maximising

the posterior distribution calculated using the Bayes theorem as,

P (θ|d) ∝ L(d|θ)P (θ), (2.44)

where P (θ) is the prior assumed on different model parameters.
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In Planck, different astrophysical components are modelled as,

d(ν, n̂) =
∑
c

ac(n̂, ν)sc(n̂)

= sCMB(n̂) + ss(n̂)

(
ν

ν0,s

)βs

+ sff(n̂)

(
ν

ν0,ff

)−2
gff(ν;Te)

gff(ν0,ff ;Te)

+same(n̂)

(
ν

ν0,ame

)−2
ssd0 (ν)

ssd0 (ν0,ame)

+sd(n̂)

(
ν

ν0,d

)βd+1
exp(hν0,d/kBTd)− 1

exp(hν/kBTd)− 1
, (2.45)

where ν0,c denotes the reference frequency of any component c. ssd0 is the spectra

obtained using the spinning dust SpDust2 code. Note that for the sake of readabil-

ity, the integration over the bandpass and the unit conversions between the flux

density, antenna and thermodynamic units are not explicitly shown in this expres-

sion¶. In addition to the Planck data, external data sets are used as foreground

templates for the analysis. For instance, the H-α map provided by Finkbeiner

(2003) is used as the free-free template. Similarly, the Haslam map (Remazeilles

et al. 2015) is included as the synchrotron template.

In the earlier Planck analysis, Commander is applied in the pixel-space, as orig-

inally developed in Eriksen et al. (2004a). This version is called Commander1.

However, this requires all the data sets to be at a common angular resolution.

Commander2 (Seljebotn et al. 2019) models foreground maps at the harmonic

space instead of pixel space, enabling a full-resolution analysis of Planck maps.

The latest version of the algorithm, Commander3, applies the formalism directly

on the time-ordered data (TOD) rather than pixel maps (Galloway et al. 2022).

BeyondPlanck analysis is based on this methodology (BeyondPlanck Collabora-

tion et al. 2020).

¶Also, this expression does not include all foreground components, such as CO line emissions,
for instance.
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2.3.2 Maximum entropy method

Maximum Entropy Method (MEM) is also a pixel-based Bayesian model-fitting

technique assuming a spectral model for different Galactic components and using

external data sets as priors (Bennett et al. 2003). Here, the model is designed in

such a way that the priors play a crucial role in determining the accuracy of the

fitting in regions with a low signal-to-noise ratio (SNR).

Similar to Commander, at each frequency band and sky pixel, the model tempera-

ture is formulated as,

Tm(ν, n̂) = SCMB(ν, n̂)TCMB(n̂) + Ss(ν, n̂)Ts(n̂) + Sff(ν, n̂)Tff(n̂)

+SAME(ν, n̂)TAME(n̂) + Sd(ν, n̂)Td(n̂). (2.46)

The index s,ff and d correspond to synchrotron, free-free and dust emissions, re-

spectively. Sc(ν, n̂) and Tc(n̂) represent the frequency spectrum and the spatial

amplitude (at the reference frequencies) for each component c. For synchrotron,

AME and free-free emissions, the reference frequency is chosen as 23GHz (corre-

sponding to the WMAP K band), while thermal dust is normalized at 94GHz (W

band frequency). For the synchrotron frequency spectrum, the power law model

with a constant spectral index, β = −3.0, is considered. Similarly, power law

frequency spectra with β = −2.15 and +1.8 are assumed for free-free and thermal

dust emissions, respectively. For spinning dust, the models of Ali-Haimoud et al.

(2009) and Silsbee et al. (2011) are adopted.

These models are fitted with the data by minimizing the functional H(n̂) = A(n̂)+

λ(n̂)B(n̂), with A(n̂) the standard χ2 defined as,

A(n̂) =
∑
ν

[T (ν, n̂)− Tm(ν, n̂)]
2 /σ2, (2.47)
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and B(n̂) is given by,

B(n̂) =
∑
c

Tc(n̂) ln [Tc(n̂)/Pc(n̂)] . (2.48)

λ is the regularizing parameter that determines the weighting assigned to either

the data or the prior in the fitting procedure. It varies with the sky pixel.

Pc is the prior model for the sky map of each component, given at the same

reference frequency as Tc. In WMAP analysis, these prior maps are chosen as

follows. The Haslam map scaled to K band using power-law spectrum with βs is

used for synchrotron emission. The prior for free-free emission is the extinction-

and scattering-corrected H-α maps (Finkbeiner 2003). For thermal dust, model 8

of Finkbeiner et al. (1999) is used. Temperature-corrected dust map from Schlegel

et al. (1998) is used as the prior for spinning dust.

2.3.3 Blind methods

The key advantage of blind component separation methods is that they are model-

independent and, therefore, free from biases due to our incomplete knowledge of

foreground emissions. This is achieved by assuming statistical independence of the

various components of the linear mixture defined in eq. (2.42). Furthermore, the

blind approach allows data processing, even when there is a possibility of missing

or not identifying certain components.

The following are the major blind methods used for component separation in

Planck maps.

• Internal Linear Combination (ILC) — This separation technique is based on

the linear combination of multi-frequency maps and identifying the weights
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for each map such that the variance is minimum while retaining unit response

to the CMB (Bennett et al. 2003; Eriksen et al. 2004b). The idea here is

to suppress foregrounds and noise as much as possible. At each frequency

channel i, the data yi is,

yi(n̂) = s(n̂) + fi(n̂). (2.49)

Here s(n̂) is the signal of interest, i.e. CMB, which is independent of the

frequency. fi is the collection of all the foregrounds and noise components.

The goal is to construct an estimator ŝ(n̂) of s(n̂),

ŝ(n̂) =
∑
i

ωi(n̂)yi(n̂) = s(n̂) +
∑
i

ωi(n̂)fi(n̂), (2.50)

with weights ωi, such that the signal of interest can be isolated effectively.

The simple version of ILC is to identify the weights ωi such that the variance

of the estimator is minimum and
∑

i ωi = 1. Using this approach, the

estimator effectively separates the CMB signal by reducing the impact of

foreground components.

Assuming that CMB is statistically independent of residual signals, weights

ωi corresponding to minimum variance is,

ωi =

∑
j C

−1
ij∑

ij Cij

, (2.51)

where the signal covariance matrix Cij is,

Cij = ⟨∆yi(n̂)∆yj(n̂)⟩ = ⟨(yi(n̂)− ȳ)(yj(n̂)− ȳ)⟩, (2.52)

and ⟨..⟩ denotes the average over the entire sky pixels of interest.

While the basic formulation of ILC may produce noisy results, there are im-

proved versions of ILC techniques such as Harmonic ILC (Kim et al. 2008),
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Needlet ILC (Basak & Delabrouille 2013), Generalized Needlet ILC (Re-

mazeilles et al. 2011) etc., which were extensively used in WMAP and Planck

data analysis.

• SMICA — SMICA stands for Spectral Matching Independent Component

Analysis and is employed in the harmonic space. A limited set of templates

with flexible power spectra, frequency spectra and correlation among differ-

ent components represents the foregrounds. Here, the goal is to minimize

the mismatch between the model and the auto- and cross-power spectra of

frequency channel maps. A set of weights is then generated using the solu-

tion obtained to combine the frequency maps in the Fourier space. Using

these weights, CMB maps are obtained (Cardoso et al. 2008).

• SEVEM — SEVEM, Spectral Estimation Via Expectation Maximization, is

based on internal template fitting and, thus, a semi-blind method. In this

method, foreground templates are prepared internally by subtracting two

different frequency maps so that the CMB contribution in the template is

minimized (Martínez-González et al. 2003). These template maps are then

used along with a set of weights to derive CMB from the CMB-dominating

frequency channels (Fernández-Cobos et al. 2012). In Planck, four sets of

templates are obtained as the difference between the pairs of Planck channels:

(30− 44), (44− 70), (545− 353), and (857− 545) GHz. They are then used

to clean the CMB dominating channels, 143 GHz and 217 GHz. Note that

this method can be implemented in both real and wavelet space.





Chapter 3

Statistical Tools for Smooth

Random Fields

In this chapter, we summarise the properties of smooth random fields and the

mathematical and statistical tools used to characterize them. We begin with the

definition of random fields and introduce Gaussian random fields in section 3.1.

Moreover, we describe the different properties of GRFs and how they are important

in cosmological studies. In section 3.2, we discuss non-Gaussianity and how higher-

order N -point functions such as skewness, kurtosis, and bispectrum tell us about

the non-Gaussian properties of the cosmological fields. Finally, section 3.3 presents

the morphological tools, such as Minkowski functionals (MFs) and Minkowski

tensors (MTs), which are extensively used in the development of this thesis. We

will explain the mathematics of these tools, the analytical formulation for mildly

non-Gaussian cases and the methods used to compute them.
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3.1 Gaussian random fields

Let us begin with the definition of a random field. The discussions presented here

are based on Adler (2010). A random field is a collection of random variables f(x)

defined on a probability space, such that x = (x1, x2, ..., xn) be the coordinate

system for an n dimensional smooth manifold M. A random field is characterized

by it’s k-point joint probability distribution function (PDF) defined for any k

points on M as,

P(f(x1), f(x2), ..., f(xk)). (3.1)

The covariance function ξij for the random field f(x) gives the spatial correlation

between any two points xi and xj on M. It is defined as

ξij = ⟨(f(xi)− µxi
)(f(xj)− µxj

⟩. (3.2)

The angular bracket, ⟨..⟩, denotes the ensemble average. µxi
and µxj

represents

the mean values of the random variables at xi and xj, respectively. Now, for any

x, the variance of the random variable f at x is given by the auto-covariance,

ξ(x,x) = ⟨f(x)2⟩ = σ2
0(x). (3.3)

If the transformation x → x+a makes the probability distribution P(f) invariant,

then the field f is homogeneous (stationary). This has the following consequences.

1. For every point x on M, the PDF of random variable is the same.

2. Covariance function satisfies,

ξij ≡ ξ(xi,xj) = ξ(xi − xj). (3.4)
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3. Auto covariance (or the variance) ξ(x,x) = ξ(0) = σ2
0 is constant over M.

Similarly, the mean µx of f(x) remains constant for any x.

Under rotation, If the covariance function ξij remains invariant, then the random

field is isotropic, following the condition

ξ(xi,xj) = ξ(|xi − xj|). (3.5)

For a homogeneous isotropic field f , the covariance function between two points

depends only on the distance between them.

If the covariance function ξij is twice differentiable with the derivatives being

finite at any two points xi = xj, then the first derivative of the field exists on the

manifold. Similarly, any k-th derivative of the field exists if ξ is 2k differentiable.

In the case of random fields, which are homogeneous and isotropic, all their higher-

order derivatives are also homogeneous and isotropic.

A random field is Gaussian if all of its k-point joint PDFs are multivariate Gaussian

distributions,

P(f(x1), f(x2), ..., f(xk)) =
1√

(2π)k det(Ξ)
exp

(
− 1

2

k∑
i,j=1

fi(Ξ
−1)ijfj

)
, (3.6)

where fi ≡ {f(xi)} = {f(x1), f(x2), ..., f(xk)} with mean zero. Ξ is the k × k

covariance matrix of fi, with it’s elements given by ξij. From the joint PDF, it is

evident that the statistics of a Gaussian random field (GRF) are fully characterized

by the two-point correlation (covariance) function, ξij. For a Gaussian field f , all

of its derivative fields are also Gaussian distributed. Further, the field and the

derivative fields form a multi-variate Gaussian random field.
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In cosmology, Gaussian random fields (GRFs) are used to model the initial condi-

tions of the universe and the distribution of matter on large scales. As discussed

previously, inflation predicts that the primordial quantum fluctuations are Gaus-

sian distributed, which then evolved to form the anisotropies in the CMB and

the galaxy distributions as we observe today. Therefore, the CMB anisotropies

(∆T (n̂)) or the matter fluctuations (δm(x)) can be well-modelled as GRFs. By

comparing the predicted statistical properties of GRFs with that of the observed

data (both CMB and galaxy observations), one can distinguish various theoretical

models and obtain important insights into the physical processes that happened

in the primordial epochs.

To fully characterize the statistics of random fields, it is essential to compute

ensemble averages over multiple realizations of the random process. However,

the universe manifests itself as a single realization, which restricts our capacity

to completely describe its statistical properties. To circumvent this problem, we

utilize the notion of ergodicity for homogeneous random fields. This allows us to

replace the ensemble average over multiple universes with the spatial average over

a single universe (realization). Mathematically, this can be expressed as

∫
df P(..) ⇐⇒

∫
M dV (..)∫
M dV

, (3.7)

dV is the infinitesimal volume element on the space M. This means that different

regions of the universe can be considered as different realizations of the underlying

random process. However, ergodicity breaks down when the volume of observation

is limited, resulting in statistical fluctuations known as cosmic variance. The effect

is prominent while studying the features towards large angular scales. This is

because of the finite survey volume of galaxy observations or the finite size of the

observable universe for CMB studies.
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Figure 3.1: Matter power spectrum (Pm(k)) obtained using Planck and various
other cosmological probes (Planck Collaboration et al. 2020a).

As long as the evolution of density perturbations is linear, the initial Gaussian fluc-

tuations remain Gaussian distributed. As a result, the Fourier modes of fluctua-

tions remain uncoupled and evolve independently. It is, therefore, more convenient

to represent the Gaussian statistics in terms of the power spectrum, the Fourier

transform of the two-point correlation function. For 3D matter distribution δm(x),

⟨δ̃m(k)δ̃∗m(k′)⟩ =

∫
d3x d3x′ e−ik.xe−ik′.x′⟨δm(x)δm(x′)⟩

≡ (2π3)δD(k− k′)Pm(k). (3.8)

Pm(k) represents the matter power spectrum. The delta function, δD, emerges

due to the assumption of homogeneity, implying that each Fourier mode evolves

independently. Also, due to isotropy, Pm(k) depends only on the magnitude of the

wave vector, |k| ≡ k. Pm(k) obtained using Planck and various other cosmological

probes is shown in figure 3.1.
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CMB anisotropies (∆T ) are defined on a sphere. As we saw in the previous chapter,

∆T can be decomposed using spherical harmonics as,

∆T (n̂) =
∑
ℓ,m

aℓmYℓm(n̂), (3.9)

and similar to eq. (3.8), the covariance of the multipole coefficients can be written

in terms of the angular power spectrum (Cℓ) as,

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ. (3.10)

Cℓs are independent of m due to the assumption of isotropy.

3.1.1 Estimation of angular power spectrum

For a given field f(n̂) defined on a sphere, angular power spectrum Cℓ can be

estimated as,

Ĉℓ =
1

2ℓ+ 1

∑
m

|aℓm|2, (3.11)

where aℓms are computed using the orthogonality property of Yℓm as,

aℓm =

∫
d2n̂ f(n̂)Y ∗

ℓm(n̂). (3.12)

In the actual computation of the power spectrum, there are two challenges associ-

ated. First, for a map with Npix number of pixels, Cℓ estimation involves O(N2
pix)

operations. For high resolution maps such as from Planck (Npix ∼ 107) or ACT

(Npix ∼ 1010), this becomes computationally quite expensive. Second, in most

cases, we do not get the full sky for the analysis due to the unavailability of data

or the contamination from other sources, such as Galactic foregrounds at certain
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Figure 3.2: Planck common mask used for temperature analysis (Image Credit:
Planck Legacy Archive (PLA))

pixels. Therefore, we define a mask M(n̂) such that,

fm(n̂) = f(n̂)×M(n̂). (3.13)

M(n̂) has values zero and one for the masked and the unmasked pixels, respec-

tively. Figure 3.2 shows the common mask used in Planck CMB analysis.

However, this multiplication can alter the aℓm coefficients and therefore, Ĉℓ, in-

ducing coupling of Fourier modes,

ãℓm =

∫
dn̂ f(n̂)M(n̂)Y ∗

ℓm(n̂), C̃ℓ =
1

2ℓ+ 1

∑
m

|ãℓm|2. (3.14)

C̃ℓ is called pseudo power spectrum. The ensemble average, ⟨C̃ℓ⟩ is related to the

full-sky power spectrum average ⟨Ĉℓ⟩ as,

⟨C̃ℓ⟩ =
∑
ℓ′

Kℓℓ′⟨Ĉℓ⟩, (3.15)

where Kℓℓ′ is the kernel that quantifies the mode-mode coupling associated with

the masking. It can be shown that Kℓℓ′ depends only on the geometry of the

mask (see appendix of Hivon et al. (2002)). Furthermore, in polarization studies,

https://pla.esac.esa.int/
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incomplete sky coverage can result in the leakage of E-mode signals to B-modes.

This can lead to a biased estimation of polarization power spectra. Inverting

eq. (3.15) by calculating the inverse of the coupling matrix Kℓℓ′ , the full angular

power spectrum can be obtained (Hivon et al. 2002), thereby minimising the bias

associated with the cut-sky.

There are several pseudo-Cℓ algorithms developed for a fast and computationally

inexpensive estimation of power spectrum while mitigating the effects of mode

coupling due to masking (Szapudi et al. 2001; Chon et al. 2004; Tristram et al.

2005; Alonso et al. 2019). Many of these packages are publicly available∗ and are

used in the analysis pipelines of WMAP, Planck and other CMB experiments.

3.2 Non-Gaussianity and higher-order correlations

As discussed previously, the primordial quantum fluctuations and, as a result,

the CMB anisotropies are Gaussian distributed and can be well explained using

the two-point correlation functions (equivalently, the power spectrum). However,

due to the self-interaction of the inflaton field or coupling with other fields, in-

flationary models predict the fluctuations to have a tiny deviation from Gaussian

behaviour (for a discussion on the non-Gaussianity from different inflationary mod-

els, refer to Bartolo et al. (2004)). The detection of primordial non-Gaussianity

is another powerful tool to understand the nature of interactions during inflation

and, thereby, constrain various inflationary models (Komatsu & Spergel 2001;

Maldacena 2003; Meerburg et al. 2019). So far, the CMB and large-scale struc-

ture studies have not reported deviations from Gaussianity (Planck Collaboration

et al. 2020e; Rezaie et al. 2023). Upcoming galaxy surveys will shed more light on

primordial non-Gaussianity (Sartoris et al. 2016).

∗See for example, Polspice, Xpol and NaMaster

http://www2.iap.fr/users/hivon/software/PolSpice/
https://gitlab.in2p3.fr/tristram/Xpol
https://github.com/LSSTDESC/NaMaster


Chapter 3: Statistical Tools for Smooth Random Fields 77

When a random field deviates from Gaussian statistics, relying solely on two-point

correlations and power spectrum becomes inadequate to fully characterize its fea-

tures. Higher-order correlations and more sophisticated statistical measures are

necessary to fully characterize the complex and non-linear features exhibited by

non-Gaussian fields. In the case of cosmological fields, the statistics of fluctua-

tions deviate slightly from Gaussianity, what is known as "mildly non-Gaussian"

behaviour. In this case, the non-Gaussian deviations can be expanded perturba-

tively in terms of the linear order Gaussian fluctuations (Salopek & Bond 1990).

As a result, the higher order interaction terms become negligible, and thus, the

mild-non-Gaussianity can be quantified in terms of three-point (skewness) and

four-point (kurtosis) functions or its Fourier transforms, bispectrum and trispec-

trum, respectively.

The most simple non-Gaussian scenario for the single-field slow-roll inflation is

the so-called local-type non-Gaussianity (Maldacena 2003). Here, the Bardeen

curvature potential Φ(x) can be expanded as,

Φ(x) = ϕG(x) + fNL(ϕ
2
G(x)− ⟨ϕ2

G(x)⟩) + gNLϕ
3
G(x) + ..., (3.16)

where ϕG(x) is the corresponding Gaussian field. fNL and gNL are the non-

linearity parameter that characterizes the amplitude of non-Gaussian interac-

tions. For local-type non-Gaussianity, Planck constraints are fNL = −0.9 ± 5.1

and gNL = (−5.8 ± 6.5) × 104, consistent with zero detection of primordial non-

Gaussianity (Planck Collaboration et al. 2020e).

As the evolution of density fluctuations becomes non-linear under gravity, the fluc-

tuations start exhibiting non-Gaussian behaviour. This late-time non-Gaussianity

arising from the gravitational clustering can be observed in the distribution of dark

matter, galaxies and clusters. Unfortunately, this poses a serious challenge in the
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observations of large-scale structures to detect primordial non-Gaussianity. Accu-

rate theoretical modelling is required to disentangle the primordial and late-time

non-Gaussianities (Tellarini et al. 2016; Uhlemann et al. 2018).

Although CMB is a clean probe of inflationary non-Gaussianity, it is limited by

cosmic variance at large angular scales. The secondary anisotropies in CMB, such

as gravitational lensing and the Sunyaev-Zeldovich effect, can induce additional

non-Gaussianity. These secondary effects can also significantly bias the measure-

ments of primordial non-Gaussianity at small angular scales (Hill 2018; Coulton

et al. 2023). Moreover, the Galactic emissions are highly non-Gaussian and accu-

rate component separation is crucial to avoid the leakage of these signals in the

CMB non-Gaussianity measurements (Jung et al. 2018). Through the improved

sensitivity as well as the careful treatment of secondary effects, upcoming facilities

such as Simons Observatory and CMB-S4 are expected to provide better estimates

of primordial non-Gaussianity (Ade et al. 2019; Abazajian et al. 2016).

3.2.1 Estimators for Non-Gaussianity

As discussed earlier, the two-point correlation function completely describes the

statistics of a Gaussian field. Consequently, all the odd N -point correlations are

zero, and the even N -point correlation functions can be expressed in terms of the

two-point functions. This is not the case for a non-Gaussian field. Non-Gaussianity

introduces higher-order correlations among the field values as well as the derivative

fields. Hence, the non-Gaussianity of a given field can be tested by computing

higher-order N -point correlation functions of the field and its derivatives.

Given a non-Gaussian field, the skewness parameters (three-point correlators) are

the first set of non-zero higher-order N -point functions for a non-Gaussian field.

These are the third moments of the underlying joint PDF. For a given field u
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with mean zero, its gradient ∇u, and Laplacian ∇2u, the skewness parameters are

defined as follows,

S0 =
⟨u3⟩c
σ4
0

, S1 =
⟨u2∇2u⟩c
σ2
0σ

2
1

, S2 =
2⟨|∇u|2∇2u⟩c

σ4
1

, (3.17)

where σ0 = ⟨u2⟩ and σ1 = ⟨|∇u|2⟩. The subscript c indicates that these quantities

are the connected cumulants. As the field is mean-free, the third-order cumulants

are equal to the third-order moments.

Similarly, the four-point functions, also called kurtosis parameters, are given as,

K0 =
⟨u4⟩c
σ6
0

, K1 =
⟨u3∇2u⟩c
σ4
0σ

2
1

,

K2 =
2⟨u|∇u|2∇2u⟩c + ⟨|∇u|4⟩c

σ2
0σ

4
1

,

K3 =
⟨|∇u|4⟩c
2σ2

0σ
4
1

. (3.18)

Fourth-order cumulants are given in terms of the moments (Matsubara & Kuriki

2020) as,

⟨u4⟩c = ⟨u4⟩ − 3σ4
0, (3.19)

⟨u3∇2u⟩c = −3⟨u2|∇u|2⟩c = −3(⟨u2|∇u|2⟩ − σ2
0σ

2
1), (3.20)

⟨u|∇u|2∇2u⟩c = ⟨u|∇u|2∇2u⟩+ σ4
1, (3.21)

⟨|∇u|4⟩c = ⟨|∇u|4⟩ − 2σ4
1. (3.22)

One important consequence of non-Gaussianity is the coupling between Fourier

modes, which is absent for a Gaussian field. Therefore, it is more convenient to

measure the non-Gaussian features of a random field in harmonic space. Angular

bispectrum, the Fourier transform of three-point functions, is commonly used in

constraining primordial non-Gaussianity of CMB maps. It is defined in terms of
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spherical harmonic coefficients as,

Bℓ1ℓ2ℓ3 ≡
∑

m1m2m3

 ℓ1 ℓ1 ℓ3

m1 m1 m3

 ⟨aℓ1m1aℓ1m1aℓ1m1⟩, (3.23)

where the matrix is the Wigner 3-j symbol (Komatsu & Spergel 2001). Bℓ1ℓ2ℓ3 is

averaged over m with the assumption of rotational invariance. In the same manner,

the Fourier equivalent of the four-point function, trispectrum, is a standard tool

used to capture the quadratic features in CMB and other data sets (Hu 2001).

Recently, Philcox (2023a,b) has developed pipelines to compute the power, bi- and

tri-spectra for scalar and tensor fields defined on a sphere by taking into account

various real-life data challenges such as instrumental effects and masking†.

Morphological statistics such as scalar Minkowski functionals (MFs) (Minkowski

1903; Tomita 1986) are computed in real space and contain information on all

orders of N -point functions. This makes them particularly advantageous over

Fourier space methods such as the bispectrum and trispectrum in searches for non-

Gaussianity in situations where the non-Gaussian properties are a priori unknown

and/or when the field is highly non-Gaussian. According to Hadwiger’s theorem,

any morphological descriptors in d-dimensional space can be represented in terms

of d+ 1 MFs (Hadwiger 1959). In 2d, there are three MFs: area-fraction, contour

length and genus, denoted as V0, V1 and V2, respectively.

MFs have been extensively used in CMB cosmology for measuring the primordial

non-Gaussianity (Mecke et al. 1994; Schmalzing & Buchert 1997; Novikov et al.

2000; Chingangbam & Park 2009; Chingangbam et al. 2017a; Planck Collaboration

et al. 2016c; Buchert et al. 2017). They have also found application in finding resid-

ual foreground signals in the cleaned WMAP CMB maps (Chingangbam & Park

2013), and to understand the properties of Galactic synchrotron radiation (Rana

et al. 2018). Related topological quantities like Betti numbers were also employed

†The implementation is publicly available as PolyBin package.

https://github.com/oliverphilcox/PolyBin
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to understand the morphology of the interstellar turbulence (Makarenko et al.

2018). Scalar MFs can be generalized as tensors, which are called Minkowski

tensors (MTs). They carry shape information and can be used to study the align-

ment of structures (Schröder-Turk et al. 2010; Ganesan & Chingangbam 2017).

The rank-2 translation invariant MTs contain the scalar MFs as their traces. They

have been developed to study the random fields defined on curved 2d manifolds,

specifically, spaces of constant curvature such as the sphere (Chingangbam et al.

2017b). Ganesan & Chingangbam (2017); Joby et al. (2019); Kochappan et al.

(2021) have used MTs to probe the departure from SI of the CMB. Similarly, they

are used to study how weak lensing affects the CMB maps (Goyal et al. 2020;

Goyal & Chingangbam 2021), the time evolution of the fields of the EoR (Ka-

pahtia et al. 2018, 2019; Kapahtia et al. 2021), and matter density evolution and

redshift space distortion (Appleby et al. 2018b, 2022).

In the next section, a detailed discussion of the mathematics of MFs in terms of

their tensor generalization, MTs, is given. We also discuss how the properties of

random fields can be extracted by making use of these quantities.

3.3 Morphological tools - Minkowski Functionals

Tensorial Minkowski Functionals (also referred to as Minkowski tensors) are geo-

metrical quantities that encode the morphological properties of structures. They

are defined on flat space. For analysing all-sky data, such as the CMB map,

we need to analyse it on the sphere. The generalization of MTs to curved space

was given in Chingangbam et al. (2017b). We briefly outline the notations and

the method described there, analytic expressions and methods for their numerical

calculation.
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We begin with the definition of tensorial and scalar Minkowski functionals in a

unified way. Let us first consider a closed curve, denoted by C, on the unit sphere,

S2. The rank-2 Minkowski tensors (MTs) denoted by Wk, with k = 0, 1, 2, are

defined to be (Chingangbam et al. 2017b),

W0 =
B0

2
I
∫

da, W1 = B1

∫
C

T̂ ⊗ T̂ dl, W2 =
B2

2π

∫
C

T̂ ⊗ T̂ κ dl. (3.24)

In the above, I is the 2× 2 identity matrix, and ⊗ denotes the symmetric tensor

product given by T̂ ⊗ T̂ = 1
2

(
T̂iT̂j + T̂jT̂i

)
. κ is the geodesic curvature, which

is defined as the derivative of the tangent vector at each point on the curve.

It explains how much the curve deviates from a geodesic at each point. The

coefficients Bk are constants which we leave unspecified here so as to focus on the

geometrical meaning of Wk. The traces of Wk give the three scalar MFs denoted

by Vk, as given below,

V0 = B0

∫
da, V1 = B1

∫
C

dl, V2 =
B2

2π

∫
C

κ dl. (3.25)

V0 is proportional to the area enclosed by the curve and V1 to the perimeter of the

curve.

According to the Gauss-Bonnet theorem, V2, the integrated curvature along the

boundary, is equal to the topological quantity Euler characteristic (χ), or equiva-

lently the genus‡ (g, χ = 2− 2g). However, for curved manifolds, the generalized

Gauss-Bonnet theorem expresses χ (or g) in terms of the linear combinations of

Vks and thus, χ is not exactly V2. Consequently, for a single curve, V2 equals B2 if

the space is flat, making it a topological quantity. In the case of curved spaces, it

is equal to B2 plus a term that is proportional to V0. In our analysis, we compute

V2 on the sphere, and therefore, it is not strictly the genus. Nevertheless, for ease

of reference, we still use the term genus for V2 throughout the thesis.

‡It differs from the mathematical definition of the genus by one.
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In short, the Minkowski tensors combine the information contained in the scalar

MFs along with new information on the shape of structures encoded in W1.

Next, we consider smooth random fields on S2. We represent the field with the

symbol u. The boundaries of a level or excursion set of the field, u = ν, where ν

denotes the chosen field level or threshold value, form smooth closed curves. Let

Qν denote the set of points in the excursion set and ∂Qν denote its boundary. The

subscript is used to remind us that the excursion set depends on ν. Then, we can

generalize the definition of Wk to the excursion set by the following,

W0(ν) =
B0

2
I
∫
Qν

da, W1(ν) = B1

∫
∂Qν

T̂⊗T̂ dl, W2(ν) =
B2

2π

∫
∂Qν

T̂⊗T̂ κ dl.

(3.26)

W1, the tensorial analogue of the contour length V1, encodes the information of

the existence of any particular alignment for the structures. If the structures in

the excursion set do not exhibit any special orientation, then W1 can be expressed

as a constant times the identity matrix. Let W1 denote the sum over the W1 for

all the curves in a given threshold. Let Λ1 and Λ2 be its eigenvalues. Then, we

can define the parameters α as,

α =
Λ1

Λ2

Λ1 < Λ2. (3.27)

α gives the measure of the relative alignment or the deviation from SI of the field.

α = 1 is obtained when W1 is proportional to the identity matrix, and it implies

that the field preserves SI, whereas deviation from unity indicates the presence of

alignment for the structures.

Effect of translation of field values on MFs and MTs: For any field, translating

the field values as u → u−a, where a is some constant, merely translates the field

levels, but does not change the geometrical and topological properties of the field.

Subtracting the mean value of the field is such an operation.
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Effect of scaling of field values on MFs and MTs: A rescaling u → u/a, where

a > 0 is some constant, also remaps the field levels. However, this transformation

does not alter the topology and the geometry of the excursion sets. Consequently,

it is a common practice to rescale the field using its standard deviation before

calculating the Minkowski functionals.

Before we proceed, a discussion regarding our notation is in order. The scalar and

tensorial MFs are usually expressed per unit area in the form of densities when

applied to random fields in cosmology. We use the same symbols Wk and Vk, with

k = 0, 1, 2, to denote the densities by including the area factor in the coefficients.

In the next section, in place of Bk, we will use coefficients Ak, which include the

area factors and whose values are commonly used in the literature. Thus, V0 gives

the area fraction of the excursion set, V1 the total boundary contour length per

unit area, and V2 the genus per unit area at each field threshold. Similarly, W1

denotes the contour MT per unit area.

3.3.1 Analytical formulation of scalar MFs for mildly non-

Gaussian fields

Let u denote a generic Gaussian random field having zero mean and standard

deviation σ0, and let ν now denote threshold values of the normalized field u/σ0.

Then the expectation values of the scalar MFs per unit area, as functions of the

threshold ν, are given by Tomita (1986),

Vk(ν) = Ak e
−ν2/2vGk (ν), (3.28)

where k = 0, 1, 2 and the coefficients Ak are

Ak =
1

(2π)(k+1)/2

ω2

ω2−kωk

( σ1√
2σ0

)k
. (3.29)
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Figure 3.3: Vk versus ν for a Gaussian random field, according to eq. (3.28).

σ1 ≡
√

⟨|∇u|2⟩, where ∇u is the gradient of the field. The numerical factors are

ω0 = 1, ω1 = 2, ω2 = π. The functions vGk are

vG0 (ν) =

√
π

2
eν

2/2 erfc
(

ν√
2

)
, (3.30)

vG1 = 1, (3.31)

vG2 (ν) = ν. (3.32)

The superscript ‘G’ stands for Gaussian. Figure 3.3 shows the variation of the

three MFs (Vk) as a function of threshold values (ν) for a Gaussian field.

For mildly non-Gaussian fields, again denoted by u, the scalar MFs can be ex-

pressed in the same form as eq. (3.28), but with vGk replaced by vk, which can be

expanded in powers of the standard deviation σ0 (Matsubara 2010) as,

vk = vGk + v
(1)
k σ0 + v

(2)
k σ2

0 +O(σ3
0). (3.33)

The first-order non-Gaussian terms are given in terms of three skewness cumulants

defined in eq. (3.17) as,

v
(1)
0 (ν) =

S0

6
H2(ν), (3.34)

v
(1)
1 (ν) =

S0

6
H3(ν)−

S1

4
H1(ν), (3.35)

v
(1)
2 (ν) =

S0

6
H4(ν)−

S1

2
H2(ν)−

S2

2
H0(ν). (3.36)
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Hn(ν) are the Hermite polynomials.

The second-order terms are given in terms of four kurtosis cumulants given in eq.

(3.18) as,

v
(2)
0 (ν) =

S2
0

72
H5(ν) +

K0

24
H3(ν), (3.37)

v
(2)
1 (ν) =

S2
0

72
H6(ν) +

K0 − S0S1

24
H4(ν)−

1

12

(
K1 +

3

8
S2
1

)
H2(ν)−

K3

8
,

(3.38)

v
(2)
2 (ν) =

S2
0

72
H7(ν) +

K0 − 2S0S1

24
H5(ν)−

1

6

(
K1 +

1

2
S0S2

)
H3(ν)

−1

2

(
K2 +

1

2
S1S2

)
H1(ν). (3.39)

Alternatively, analytic expressions for MFs for mildly non-Gaussian fields can be

obtained using the Gram-Charlier expansion of the joint probability distribution

for the field and its derivatives (Gay et al. 2012; Codis et al. 2013).

To measure the non-Gaussian deviation of a given field, we define

∆Vk = Vk − V G
k , (3.40)

where V G
k is the MFs corresponding to a Gaussian field. In the case of MFs for

a mildly non-Gaussian field, ∆Vk isolates the non-Gaussian perturbative terms as

in eq. (3.33). This quantity is often calculated by normalizing with the amplitude

of V G
k .

Next, let us examine the behaviour of MFs for mildly non-Gaussian fields. We

consider the local-type fNL and gNL non-Gaussian CMB maps in the Sachs-Wolfe

(SW) limit. In this limit, ∆TSW = −Φ/3 and using eq. (3.16),

∆TSW

T
=

∆TG

T
− 3fNL

(
∆TG

T

)
+ 9gNL

(
∆TG

T

)2

+ ..., (3.41)
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Figure 3.4: The normalized non-Gaussian deviations (∆Vk) for local type
primordial non-Gaussianity for the cases fNL = 100, gNL = 0 (top), fNL =
0, gNL = 106 (middle) and fNL = 0, gNL = 106 (bottom) for the three Minkowski
functionals. The black lines are the results obtained using the analytic formulae
(eq. (3.33)), and the orange lines are the results from the numerical calculations.

where ∆TG/T is the Gaussian CMB map obtained using the power spectrum,

ℓ(ℓ+ 1)

2π
CSW

ℓ = 10−10 (3.42)

for ℓ < 750 and zero otherwise. We generate 1000 Gaussian and non-Gaussian

maps with healpix§ resolution, Nside = 512 for three cases: only fNL, only gNL

and fNL plus gNL. We take fNL = 100 and gNL = 106, for which the non-Gaussian

terms are of comparable amplitudes.

Scalar MFs are computed numerically for these maps using the method outlined

in the next section. Also, we obtain MFs using the analytical formula given in

eq. (3.33) in terms of the skewness and kurtosis values of the maps. ∆Vks (as

defined in eq. (3.40)) are then calculated for both analytical and numerical MFs

and are shown in figure 3.4. We find good agreement between the numerical

§https://healpix.sourceforge.io/

https://healpix.sourceforge.io/
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calculations and analytical results. We see that for different non-Gaussian types,

MFs follow characteristic shapes. This shows the potential of MFs in distinguishing

the nature of non-Gaussianity in different fields.

3.3.2 Computing scalar and tensorial Minkowski function-

als

3.3.2.1 Method 1 - using field derivatives

Given the field u, we rescale it to make it mean-free and unit standard deviation.

MFs can be computed at each threshold value ν in terms of u and its derivatives.

The line integrals in eq. (3.26) can be converted into surface integrals. In terms

of the field u, V0 is given as,

V0(ν) =

∫
S2

Θ(u− ν) da, (3.43)

where Θ is the step function. Using T̂i = ϵij
u;j

|∇u| , where ϵ is the two dimensional

anti-symmetric Levi-Civita tensor and u;j the j-th component of the covariant

derivative, we get

W1 =
1

4

∫
S2

δ(u− ν)
1

|∇u| M da, (3.44)

W2 =
1

2π

∫
S2

δ(u− ν)
κ

|∇u| M da. (3.45)

The expression for κ is

κ =
2u;1u;2u;12 − u2

;1u;22 − u2
;2u;11

|∇u|3 (3.46)
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and M is,

M =

 u2
;2 −u;1u;2

−u;1u;2 u2
;1


For a field in discretized space, the δ-function is taken as δ(u − ν) = 1/∆ν, if

u ∈ [ν − ∆ν/2, ν + ∆ν/2] and zero otherwise. ∆ν is the bin size. Using this

method, we compute V0, W1 and W2. From the eigenvalues of W1, we calculate

α. Further, by taking the traces of W1 and W2, we obtain V1 and V2. All these

quantities are then divided by the total area to get their corresponding densities.

The δ function approximation is shown to have inherent numerical error in Lim

& Simon (2012). This error will be present in the calculations of W1 and W2,

and in V1 and V2. For comparison, we will compute V1 and V2 using the geometric

method, which is described in the next section. It was shown in Goyal et al. (2020)

that the numerical errors in the two eigenvalues of W1 are comparable and, hence,

get cancelled out when computing α. Therefore, the calculation of α is unbiased.

3.3.2.2 Method 2 - geometric method for scalar MF estimation

The geometric estimation of MFs is carried out by first identifying the structures

from the excursion sets at different field thresholds. In the following, we briefly

outline the method followed by the CND_REG2D (Ducout et al. 2013) code that we

have used. For more details, we recommend checking the original papers.

The excursion sets are obtained as a binary field by identifying pixels where the

fields have values below or above the chosen threshold ν. The algorithm identifies

each structure (connected region or hole) by marking boundary pixels as different

from the pixels in the inner part of the structures. The total number of pixels

included in each structure will constitute the first MF, area fraction V0. Next, the

genus, V2, is obtained by computing the vertices of the pixel grid at the boundaries

of the structures. It uses the Gauss-Bonnet theorem, which relates the genus to
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the integration of the curvature along the boundary. As topological properties

are invariant under the continuous transformation of the boundary, summing the

vertices with appropriate weights will give the genus of the region. The estima-

tion of the next MF, the contour length, V1, is a bit more involved. The length

of the perimeter of the polygon formed by the boundary gives V1. Due to the

pixelated form, the error in the estimation of the length can be large. In order to

control the error, interpolation of field values between adjoining boundary pixels

is performed so as to smoothen the pixelated boundary and obtain a sufficiently

accurate estimate of the length of the polygon.



Chapter 4

Minkowski Functionals for

Composite Smooth Random Fields∗

The morphology of smooth random fields encodes a vast amount of valuable infor-

mation concerning the underlying physical processes that generate these fields. In

the context of cosmology, various geometrical and topological statistical quantities

have been proposed in the literature to quantify the morphology of cosmological

random fields and extract physical information. As discussed in the previous chap-

ter, Minkowski functionals (MFs) are undeniably one of the most used statistical

tools that have found wide application to investigate a myriad of physical charac-

teristics in cosmological fields.

In real-world scenarios, any observed data always contains noise apart from the

true signal and may be contaminated by other signals. It is important to sys-

tematically review and quantify how the presence of secondary fields (including

∗The chapter is based on the work which is undergoing revision for publication. The pre-print
is available as Chingangbam & Rahman (2023).
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noise and other contaminating signals) impacts the morphological and statistical

properties of the underlying signal of interest. With this motivation, this chapter

extends the formulae derived in Matsubara & Kuriki (2020) to composite fields,

which are the summation of two different fields.

We obtain the analytic expressions of MFs for composite fields in 2d in terms of

their constituent fields and apply the formulae to two toy examples of composite

fields. The first instance involves adding a Gaussian CMB temperature map with

a Gaussian noise map, while in the second case, the field is a combination of a

non-Gaussian CMB map and a Gaussian noise map. This analysis is motivated

by our previous research focused on understanding the statistical nature of Galac-

tic foreground emissions (Rahman et al. 2021; Rahman et al. 2022), which form

the basis for the forthcoming two chapters, and how the cleaned CMB maps are

impacted by the contamination from residual foregrounds (Chingangbam & Park

2013).

Chapter organization is as follows. Section 4.1 contains a brief overview of the

analytical formulae for ensemble expectations of MFs for mildly non-Gaussian

fields for general dimension d. Section 4.2 presents our extension of the formulae

to composite fields, expressing the MFs for the composite field in terms of the

MFs of constituent fields. As an application of the formulae, we derive the bias

introduced by noise on the morphology and non-Gaussianity of CMB temperature

maps. This is discussed in section 4.3. In section 4.4, we include a summary of

our results and discussion.
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4.1 Review of MFs for mildly non-Gaussian field

For a given field f , we define the following spectral parameters,

σ2
0 ≡ ⟨f 2⟩, σ2

1 ≡ ⟨|∇f |2⟩, σ2
2 = ⟨(∇2f)2⟩, rc ≡ σ0/σ1. (4.1)

We take the mean of the field f as zero so as to simplify the discussion. It is easy

to generalize the discussions presented here to fields with non-zero means.

If the field f is non-Gaussian, the higher-order connected cumulants are non-zero.

The generalized skewness cumulants are defined (Matsubara & Kuriki 2020) as

S(0) =
⟨f 3⟩c
σ4
0

,

S(1) =
3

2

⟨f |∇f |2⟩c
σ2
0σ

2
1

,

S(2) =
−3d

2(d− 1)

⟨|∇f |2∇2f⟩c
σ4
1

. (4.2)

The generalized kurtosis cumulants are

K(0) =
⟨f 4⟩c
σ6
0

,

K(1) = 2
⟨2f 2|∇f |2⟩c

σ4
0σ

2
1

,

K
(2)
1 =

−2d

(d+ 2)(d− 1)

(d+ 2)⟨f |∇f |2∇2f⟩c + ⟨|∇f |4⟩c
σ2
0σ

4
1

,

K
(2)
2 =

−2d

(d+ 2)(d− 1)

(d+ 2)⟨f |∇f |2∇2f⟩c + d⟨|∇f |4⟩c
σ2
0σ

4
1

,

K(3) =
2d2

(d− 1)(d− 2)

⟨|∇f |2(∇2f)2⟩c − ⟨|∇f |2fijfij⟩c
σ6
1

, (4.3)

where d is the dimension of the space. The subscript c on the angle brackets

implies that these quantities are connected cumulants†. For d = 1, 2, K(3) is

†These cumulant definitions are for any general d-dimensional manifold. They are slightly
different from the skewness-kurtosis definitions given in the previous chapter, which are solely
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undetermined, but it does not appear in the analytical expressions for MFs in

these dimensions. For a mean-free field, the third-order cumulants are the same as

the third-order moments. Further, the fourth-order cumulants are given in terms

of the moments (Matsubara & Kuriki 2020) as,

⟨f 4⟩c = ⟨f 4⟩ − 3σ4
0,

⟨f 2|∇f |2⟩c = ⟨f 2|∇f |2⟩ − σ2
0σ

2
1,

⟨f |∇f |2∇2f⟩c = ⟨f |∇f |2∇2f⟩+ σ4
1,

⟨|∇f |4⟩c = ⟨|∇f |4⟩ − d+ 2

2
σ4
1,

⟨|∇f |2(∇2f)2, ⟩c = ⟨|∇f |2(∇2f)2⟩ − σ2
1σ

2
2,

⟨|∇f |2fijfij⟩c = ⟨|∇f |2fijfij⟩ − σ2
1σ

2
2. (4.4)

Here fij are derivatives with respect to ith and jth coordinates for any manifold

M, with i, j = 1, 2, ..., d.

As demonstrated by Matsubara (2003, 2010); Matsubara & Kuriki (2020), analytic

formulae for the ensemble expectation of MFs per unit volume for mildly non-

Gaussian fields in d-dimension can be expressed as perturbative expansions in

for 2d and were based on Matsubara (2010). In this chapter, we will use these generalized
definitions, while in the upcoming chapters, we will switch back to the previous 2d definitions.
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powers of σ0. Keeping up to σ2
0 order, the expressions are given by

V̄
(d)
k (ν) ≃ Ake

−ν2/2

[
Hk−1(ν)

+

{
1

6
S(0)Hk+2(ν) +

k

3
S(1)Hk(ν) +

k(k − 1)

6
S(2)Hk−2(ν)

}
σ0

+

{
1

72
(S(0))2Hk+5(ν) +

(
1

24
K(0) +

k

18
S(0)S(1)

)
Hk+3(ν)

+k

(
1

8
K(1) +

k − 1

36
S(0)S(2) +

k − 2

18
(S(1))2

)
Hk+1(ν)

+k

(
k − 2

16
K

(2)
1 +

k

16
K

(2)
2 +

(k − 1)(k − 4)

18
S(1)S(2)

)
Hk−1(ν)

+k(k − 1)(k − 2)

(
1

24
K(3) +

k − 7

72
(S(2))2

)
Hk−3(ν)

}
σ2
0 +O(σ3

0)

]
,

(4.5)

where k = 0, 1, . . . , d + 1. Hk(ν) are the (probabilist) Hermite polynomials, and

H−1(ν) =
√

π
2
eν

2/2. The amplitude Ak is given by

Ak =
1

(2π)(k+1)/2

ωd

ωd−kωk

(
σ1√
dσ0

)k

, (4.6)

where the factors ωn for integer n ≥ 0 are given by ωn = πn/2/Γ(n/2 + 1). So, we

have ω0 = 1, ω1 = 2, ω2 = π, ω3 = 4π/3, and so on.

4.2 MFs for 2d composite fields

We now focus on composite fields, which are sums of two fields, on 2d manifolds.

It is straightforward to extend this formalism to sums of more than two fields.

Consider the field f given as f = u + v, where u and v are either Gaussian

or mildly non-Gaussian smooth random fields. Here, our goal is to convert the
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formulae for the MFs of f into MFs of the component fields u and v. This will

enable us to better understand the respective contributions of these constituent

fields. Afterwards, we can explore specific cases and apply this approach to several

intriguing physical examples. For physical applications, we take u to be the signal

of interest, whereas v is either noise or a contaminating field. We will use a

superscript, ’f, u, v’, for the quantities σ0, σ1, rc, S
(i), K(i) to specify the field.

Alongside the spectral parameters and the typical size of structures for u, v, and

f (as defined in eq. (4.1)), it is essential to introduce the cross-correlation of u and

v, as well as the cross-correlation of their first derivatives, which we denote by,

cuv =
⟨uv⟩
σu
0σ

v
0

, cuv1 =
⟨∇u.∇v⟩
σu
1σ

v
1

. (4.7)

Let us also denote,

ϵ =
σv
0

σu
0

, p =
ruc
rvc

= ϵ−1σ
v
1

σu
1

. (4.8)

Note that in the expression for ϵ, the numerator contains v, whereas, in the ex-

pression for p, the numerator contains u. ϵ compares the size of fluctuations of the

field values of u and v, while p compares the size of spatial fluctuations of u and

v. When considering u as the desired physical signal and v as a noise field, ϵ can

be seen as the inverse of the signal-to-noise ratio between the two fields. As per

the definition, the four parameters have the following specified ranges,

0 < ϵ < ∞, 0 < p < ∞, |cuv| ≤ 1, |cuv1 | ≤ 1, (4.9)

The relative significance of the fields u and v in the MFs of their composite field

is determined by these four parameters ϵ, p, cuv, cuv1 .



Chapter 4: Minkowski Functionals for Composite Smooth Random Fields 97

The amplitude Ak, and skewness and kurtosis quantities are expressed in terms of

ϵ, p, cuv and cuv1 using the following factors,

(
σf
0

)2
= (σu

0 )
2 (1 + ϵ2 + 2ϵcuv

)
, (4.10)(

σf
1

)2
= (σu

1 )
2(1 + ϵ2p2 + 2ϵpcuv1

)
. (4.11)

Next, we analyse the expressions for the amplitude, skewness and kurtosis terms

that go inside the formulae for MFs, one by one.

4.2.1 Amplitude of MFs

Given that the amplitude Af
k of MFs is proportional to (rfc )

−k, our job is only to

express rfc in terms of ϵ, p, cuv and cuv1 . When k = 2, corresponding to V2, the

expression becomes,

(
rfc
)−2

=

(
σf
1

σf
0

)2

= (ruc )
−2

[
1 + ϵ2p2 + 2ϵpcuv1
1 + ϵ2 + 2ϵcuv

]
. (4.12)

Similarly, the expressions for other MFs can be obtained using the corresponding

powers of k.

Let us begin our discussions with the special case where u and v are uncorrelated,

with cuv = 0 and cuv1 = 0. Eq. (4.12) then simplifies as,

(
rfc
)−2

= (ruc )
−2

[
1 + ϵ2p2

1 + ϵ2

]
. (4.13)

This means that when both ϵ ≪ 1 and p ≲ O(1), we get
(
rfc
)−2 ≃ (ruc )

−2, which is

as expected. This is the limiting case when the standard deviation of the v field is

much lower than u, and the typical size of its structures is larger than or roughly

the same as that of u.
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Figure 4.1: Plot of the factor B(ϵ, p) = (1+ ϵ2p2)/(1+ ϵ2) that relates
(
rfc
)−2

and (ruc )
−2 in eq. (4.12). In the green regions, B(ϵ, p) takes values ∼ 1. Blue

regions are where it has values less than one, while the other colour bands
towards the top left denote regions where the values are larger than one.

For practical scenarios, it is more interesting to investigate intermediate values of

ϵ and p in the vicinity of one. For these values, in order to understand how
(
rfc
)−2

gets affected relative to (ruc )
−2, it is instructive to visualize the factor B(ϵ, p) =

(1 + ϵ2p2)/(1 + ϵ2) that connects both the quantities in eq. (4.12). Figure 4.1

shows a plot of B as a function of ϵ and p. It is noteworthy to observe the

following different cases as per the values of ϵ and p.

1. If ϵ = 1, with p unconstrained, then we have

(
rfc
)−2

=
1

2

(
1

(ruc )
2 +

1

(rvc )
2

)
. (4.14)

This is just the average of the amplitudes of the two fields.

2. If p = 1, with ϵ unconstrained, then rfc = ruc = rvc . In this case, the two

fields contain structures of equal sizes. This indicates that if the spatial size

of structures in both fields u and v, normalized by their respective standard
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deviations, are identical, then the field f will also exhibit structures of the

same size, irrespective of the value of ϵ. Consequently, the amplitudes of the

MFs will remain the same.

3. If p < 1 with ϵ unconstrained, then we get
(
rfc
)−2

< (ruc )
−2. In this case, the

amplitudes of the MFs of f will be less compared to that of the u field.

For ϵ < 1, expanding the denominator to ϵ2 order, we get

(
rfc
)−2 ≃ (ruc )

−2 [1− ϵ2(1− p2)
]
, (4.15)

while for ϵ > 1 we have

(
rfc
)−2 ≃ (ruc )

−2 (1/ϵ2 + p2
)
. (4.16)

4. If p > 1 with ϵ unconstrained, then we get
(
rfc
)−2

> (ruc )
−2. In this case, the

amplitudes of the MFs of f will show a rise in comparison to those of the u

field.

For ϵ < 1 we get

(
rfc
)−2 ≃ (ruc )

−2 [1 + ϵ2p2
]
, (4.17)

while for ϵ > 1 we get

(
rfc
)−2 ≃ (ruc )

−2 p2 = (rvc )
−2 . (4.18)

These cases tell us that the impact of the v field on the amplitudes of the MFs of

the composite field will be minimal only when p ∼ 1, or when ϵ → 0 and ϵp → 0.

For the general case where there exist correlations between u and v fields, the hike

or fall of the amplitudes of the MFs of the composite field relative to those of u

will be determined by whether the factor (1 + ϵ2p2 + 2ϵpcuv1 )/(1 + e2 + 2ϵcuv) is
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equal to, greater, or less than one. A positive correlation (cuv > 0) decreases the

amplitude, whereas negative correlations result in raising it. In contrast, when

there is a positive correlation in the first derivatives (cuv1 > 0), the tendency is for

the amplitude to increase, and conversely for the negative correlation.

4.2.2 Generalized skewness and kurtosis

Next, we express the generalized skewness and kurtosis cumulants of the composite

field in terms of the cumulants of u and parameters ϵ, p. To simplify the discussions,

we assume that u and v are uncorrelated.

Consider u as the mildly non-Gaussian field and v as the Gaussian field. The non-

Gaussian deviations of the MFs of f arise from u. We then present the generalized

skewness cumulants of f in terms of the corresponding cumulants of u and ϵ, p as,

S(0) fσf
0 = S(0)uσu

0

1

(1 + ϵ2)3/2
, (4.19)

S(1) fσf
0 = S(1)uσu

0

1

(1 + ϵ2)1/2 (1 + ϵ2p2)
, (4.20)

S(2) fσf
0 = S(2)uσu

0

(1 + ϵ2)
1/2

(1 + ϵ2p2)2
. (4.21)

Eqs. (4.19) and (4.20) show that the factors that constitute ϵ, p result in always

decreasing the non-Gaussian contribution from |S(0)| and |S(1)| of u. On the other

hand, the non-Gaussian contribution from |S(2)| of u increases for p < 1, and

decreases if p > 1. These relative changes of the terms involving S(0), S(1) and S(2)

will alter the shapes of non-Gaussian deviations of the MFs of f when compared

with u.
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The generalized kurtosis cumulants are more complex because of the extra terms

related to the spectral factors. The generalized kurtosis cumulants are,

K(0) f (σf
0 )

2 = K(0)u (σu
0 )

2 1

(1 + ϵ2)2
− 6ϵ2

(1 + ϵ2)3
, (4.22)

K(1) f (σf
0 )

2 = K(1)u (σu
0 )

2 1

(1 + ϵ2) (1 + ϵ2p2)

−3ϵ2 + 3ϵ2p2 + 8ϵ4p2

(1 + ϵ2)(1 + ϵ2p2)
, (4.23)

K
(1) f
2 (σf

0 )
2 = K

(1)u
2 (σu

0 )
2 1

(1 + ϵ2p2)2
+

ϵ2p2

(1 + ϵ2p2)2
,

(4.24)

K
(2) f
2 (σf

0 )
2 = K

(2)u
2 (σu

0 )
2 1

(1 + ϵ2p2)2
+ 2

ϵ2p2

(1 + ϵ2p2)2
.

(4.25)

It is straightforward to obtain the formulae for the generalized skewness and kur-

tosis expressed in terms of the corresponding cumulants for v if u is Gaussian

and v is non-Gaussian. In the broader context, when both u and v are mildly

non-Gaussian, the resulting generalized skewness and kurtosis cumulants of the

composite field f can be presented as the sum of the corresponding ones for the

constituent fields u and v. Finally, in the most general case, when the two fields are

correlated, the additional terms corresponding to the cross-correlations between

the two fields and their first and second derivatives will not be taken as zero.

Accordingly, these terms will contribute to the non-Gaussianity of the composite

field. The detailed expressions for the general case are not included here.

4.2.3 MFs in terms of skewness and kurtosis

Now, we can write the analytical ensemble expectations for MFs given in eq. (4.5)

for 2d, in terms of skewness and kurtosis. In this way, we can estimate how the
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bias in the skewness and kurtosis parameters due to the presence of secondary

fields can translate to the bias in the MFs of the composite fields.

The first-order non-Gaussian terms are given in terms of the skewness cumulants,

as,

v
(1)
0 (ν) =

S(0)

6
H2(ν), (4.26)

v
(1)
1 (ν) =

S(0)

6
H3(ν) +

S(1)

3
H1(ν), (4.27)

v
(1)
2 (ν) =

S(0)

6
H4(ν) +

2S(1)

3
H2(ν) +

S(2)

3
H0(ν). (4.28)

The second-order non-Gaussian terms are given in terms of kurtosis cumulants,

v
(2)
0 (ν) =

(
S(0)

)2
72

H5(ν) +
K(0)

24
H3(ν), (4.29)

v
(2)
1 (ν) =

(
S(0)

)2
72

H6(ν) +
1

24

(
K(0) +

4

3
S(0)S(1)

)
H4(ν)

+
1

8

(
K(1) +

4

9

(
S(1)

)2)
H2(ν)

− 1

16

(
K

(2)
1 −K

(2)
2

)
H0(ν), (4.30)

v
(2)
2 (ν) =

(
S(0)

)2
72

H7(ν) +
1

24

(
K(0) +

8

3
S(0)S(1)

)
H5(ν)

+
1

4

(
K(1) +

2

9
S(0)S(2)

)
H3(ν)

+
1

4

(
K(2) − 8

9
S(1)S(2)

)
H1(ν). (4.31)

4.3 Practical Applications of Composite Fields

In this section, we apply the aforementioned formalism in the analysis of random

fields of physical origin. Again, f is the composite of a signal field u and an

additional field v, which we consider to be noise. Our aim is to determine how the
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presence of noise gives rise to bias in the amplitude and nature of non-Gaussianity

of the signal field. This is done using the analytic formulae for MFs and comparing

them with the numerical calculations. Our numerical computation of MFs is based

on the method discussed in Schmalzing & Buchert (1997) and outlined in chapter 3.

4.3.1 Sum of two Gaussian fields - CMB and noise

Consider u, a simulated Gaussian CMB map generated from Planck best-fit CMB

power spectrum (Planck Collaboration et al. 2020a) using CAMB‡ (Lewis et al.

2000). The map is at a resolution given by healpix parameter Nside = 256. For

the secondary field v, we take the toy example of a Gaussian noise map. v is

prepared using healpix at the same Nside as the CMB map by taking a power

spectrum of the form Cℓ ∝ ℓ. We choose this power spectrum following the pattern

of noise in CMB experiments, which tends to have more power at higher ℓ values

(small scales). We take one map each for CMB and noise.

The top panel of figure 4.2 shows the simulated CMB and noise maps in the top

panels, with their composite map shown in the middle panel. In this case, ϵ = 0.4

and p = 1.35. As ϵ < 1, it is difficult to distinguish the composite map from the

CMB map visually.

In figure 4.2, the bottom panels show the numerically computed V1 and V2 as a

function of ν for the CMB (red), noise (purple) and their composite (cyan) maps.

V0 is independent of cosmological parameters for Gaussian fields and is not shown

here. The black dashed lines, which coincide with the cyan lines, represent plots of

the analytical formulae for the MFs, which are obtained using the right-hand side

of eq. (4.13) as inputs in the amplitude of the MFs. We observe good agreement

between the analytical formulae and the numerically calculated MFs. As discussed

‡https://camb.readthedocs.io/

https://camb.readthedocs.io/
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Figure 4.2: Top: Simulated CMB (left) and noise (right) maps. Middle: The
composite of CMB and noise maps. Bottom: The MFs V1 (left) and V2 (right) for
CMB (red), noise (purple) and their composite (cyan) maps. The black dashed
line, which overlaps the cyan lines, corresponds to the MFs using the analytic
formula.

in section 4.2.1, when p > 1, the amplitudes of both V1 and V2 for the composite

fields will be larger than that of the signal u. This is what we see in our results.

We conclude that the presence of noise in the CMB maps leads to a bias in the

amplitude of the MFs, which is governed by the values of ϵ and p. For p > 1, the

bias is positive (resulting in an increase of Ak), while for p < 1, the bias is negative
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(leading to a decrease of Ak). It’s worth noting that while we have illustrated the

effect using CMB and noise maps, these findings are relevant and applicable to

any composite field in general.

4.3.2 Sum of mildly non-Gaussian CMB and Gaussian noise

maps

Next, we analyse a composite field as the sum of non-Gaussian and Gaussian fields.

As a signal, a simulated CMB map with local type fNL non-Gaussianity (Malda-

cena 2003) is considered. Similar to the previous case, we consider the noise map

as the secondary map. As before, both maps are at Nside = 256. For the sig-

nal field, we take an unrealistically large value fNL = 500 simply to highlight

the impact of noise without worrying about statistical fluctuations. Furthermore,

the non-Gaussian CMB maps are simulated in the Sachs-Wolf (SW) limit (using

eq. (3.41)), simplifying the procedure for creating simulated non-Gaussian maps.

We use 1000 non-Gaussian CMB maps to obtain ensemble expectations.

Before computing the MFs of f , it is instructive to discuss its PDF, which can be

derived as follows. It was shown in Ganesan et al. (2015) that the PDF of a mildly

non-Gaussian zero-mean random variable u of local fNL type is given by the form,

Pu(x) =
1√

2π(σu
0 )

2
exp

{
− x2

2(σu
0 )

2

}
×
[
1 + fNLσ

u

{
x3

(σu
0 )

3
− 3x

σu
0

}]
, (4.32)

where x denotes values of u in its domain. In terms of ν = u/σu
0 we get

Pu(ν) =
1√

2π(σu)2
e−ν2/2

[
1 + fNLσ

u

{
ν3 − 3ν

}]
.

(4.33)
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Figure 4.3: The fractional change of fNL, given by (σu/σf )4 = 1/(1 + ϵ2)2,
that is induced by the presence of Gaussian noise is shown as a function of the
SNR (= ϵ−1).

The PDF of v is

Pv(x) =
1√

2π(σv)2
exp

{
− x2

2(σv)2

}
. (4.34)

If u and v are uncorrelated, the PDF of f is given by the convolution of their

PDFs, from which we get

Pf (x) =
1√

2π(σf )2
exp

{
− x2

2(σf )2

}
×
[
1 + fNLσ

u

{
(σu)3x3

(σf )6
− 3x

(σu)3

(σf )4

}]
. (4.35)

In terms of ν = f/σf , and redefining fNL by absorbing the factor
(
σu/σf

)4, as

f̃NL =

(
σu

σf

)4

fNL, (4.36)
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we get

Pf (ν) =
1√

2π(σf )2
e−ν2/2

[
1 + f̃NLσ

f

{
ν3 − 3ν

}]
.

(4.37)

In terms of ϵ we have (σu/σf )4 = 1/(1 + ϵ2)2, where we have used the condition

that u, v are uncorrelated. Since σu ≤ σf , we always have f̃NL ≤ fNL and the

fractional change is quantified by
(
σu/σf

)4. Comparing Eqs. 4.33 and 4.37, we see

that the functional form of the PDF of f/σf is the same as that of u/σu, but with

a decrease of the non-Gaussian level that is determined by the fractional change

of fNL. In Fig. 4.3 we show a plot of the fractional change of fNL versus the SNR

(= ϵ−1). At low SNR, the composite field is ‘Gaussianized’ due to the presence of

Gaussian noise, and the true non-Gaussianity of the signal can be recovered only

for SNR ≫ 1.

The area fraction V0 is just the cumulative distribution function. Hence, we can

anticipate that the fractional change of fNL will directly translate into a decrease

of ∆V0 for f compared to u. However, the effect of the Gaussian noise on ∆V1 and

∆V2 cannot be inferred only from the PDF of f because they encode the effect of

the variable p (first derivatives of the fields), and hence will not track the PDF

directly.

We now focus on numerical computation of the non-Gaussian deviations of the

MFs for u and f and comparison with the expected analytic expressions. For this,

we define non-Gaussian deviation (∆Vk) to quantify the non-Gaussian deviations

of the numerically computed MFs as,

∆Vk = Vk − V G
k , (4.38)

where the superscript G refers to the Gaussian expectation. For a given field whose

nature is apriori unknown, to get V G
k we calculate σ0 and σ1 for the field and
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Figure 4.4: Plots of ∆Vk for the composite field f (blue dots) and the non-
Gaussian signal field u (red dots). The corresponding ∆V ana

k are also shown
for f (black dashed line) and for u (black solid line). The amplitude of ∆V f

0 is
lower than that of u, as anticipated. The amplitudes of both ∆V f

1 and ∆V f
2 are

found to increase, and the shape is mildly different to that of u. This is due to
the combined effect of Af

k being larger than Au
k and the relative strengths and

signs between the generalized skewness cumulants.

use these values as inputs in the Gaussian analytic formulae given by eq. (4.38).

From the simulated non-Gaussian CMB and noise maps, we get ϵ̄ ≃ 0.47 and

p̄ ≃ 3.3, where the overbars indicate that the values are averaged over the 1000

non-Gaussian CMB maps.

The presence of noise in the maps will alter the amplitudes Ak and the shapes of

the MFs as a function of ν. As per the values of ϵ̄, p̄ quoted above, we should get

Af
k > Au

k for k = 1, 2. Moreover, given that the input fNL non-Gaussianity is of

leading order, the generalized skewness moments are the only important higher-

order cumulants. As a result, we can ignore σ2
0 order (kurtosis) terms in the MFs.

In order to isolate the effect on the shapes of the MFs from the effect on the

amplitudes, we study the normalized quantity ∆Vk/Ak for f and u. Due to the

fact that ∆V0/A0 for f depends only on S(0), we expect that it will show a decrease

with respect to that of u. ∆V1/A1 depends on S(0) and S(1), for which, according to

eqs. (4.19) and (4.20), has less values for f compared to u. Nevertheless, the shape

of ∆V1/A1 and whether its amplitude for f is increased or decreased with respect

to u are determined by the relative sign of S(0) and S(1). Similarly, for V2, whether
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there is a decrease or increase of ∆V f
2 /A2 depends on the relative strengths and

signs of all three generalized skewness cumulants. This is true regardless of the

fact that all these cumulants have values for f that are lower than for u.

∆Vk for the composite field f (blue dots) and the non-Gaussian signal field u (red

dots) are shown in figure 4.4. Analytic ∆Vk for f and u is also shown by the

dashed and solid black lines, respectively. We find that the numerical results have

good agreement with the analytic formulae that we have derived. As anticipated

above, we see that the amplitude of ∆V f
0 is lower than that of u. This is also

consistent with our discussion on the PDF of the field. The amplitudes of both

∆V f
1 and ∆V f

2 are found to increase, and the shape is mildly different to that of u.

As explained previously, this is because of the combined effect of Af
k being larger

than Au
k and the relative strengths and signs between the generalized skewness

cumulants.

Figure 4.5 shows ∆Vk/Ak for the composite field f (blue dots) and the non-

Gaussian signal field u (red dots). Again, the solid lines are the analytic ∆Vk/Ak

for f (dashed black) and u (solid black). As expected, there is a very good agree-

ment between the numerical results and the analytic formulae. Additionally, the

amplitudes of the MFs and their peak positions for f are found to be different

compared to those of u.

4.4 Conclusion

In this chapter, we have extended the analytic formulae for MFs of 2d mildly

non-Gaussian fields to composite fields, which are the sum of two fields. In the

context of cosmology, these formulae gain significance when working with observed

cosmological data, which is always a sum of the true signal and noise and also



Chapter 4: Minkowski Functionals for Composite Smooth Random Fields 110

Figure 4.5: Top: Plots of ∆Vk/Ak for the composite field f (blue dots) and
the non-Gaussian signal field u (red dots). The corresponding ∆V ana

k /Ak are
also shown for f and u by the black dashed and solid lines, respectively. As
expected, there is a very good agreement between the numerical results and the
analytic formulae. The amplitudes of the MFs and their peak positions for f
are different from u due to the relative strength and signs of all three skewness
cumulants.

possible contamination by other signals. The formulae presented in this work allow

us the precise quantification of the effect of the secondary field on the morphology

and statistical properties of the signal field. This, in turn, offers analytical control

over the calculations.

Illustrating this with practical situations, we apply the formulae to two composite

fields on the sphere; one field involves Gaussian CMB and Gaussian noise maps,

while the other combines non-Gaussian CMB with Gaussian noise maps. In the

case of two Gaussian fields, we use our formulae to quantify how the presence of

noise introduces bias in the amplitudes of the MFs for the CMB map. We find that

the amount of bias depends on the SNR value and the relative size of structures

of the signal and noise fields. In the second case, apart from the amplitude bias,

the presence of noise introduces modification in the nature of the non-Gaussianity

of the composite field relative to that of the signal field. This modification can be

quantified by estimating the change of the shapes of the non-Gaussian deviations

of the MFs of the composite field relative to the signal.
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The aforementioned explicit examples can easily be extended to non-Gaussian

secondary fields. For instance, one can quantify the contamination of the CMB

signal due to the presence of residual foregrounds as done in Chingangbam & Park

(2013). It is also straightforward but tedious to extend to cases where the two

component fields are correlated. Studying the properties of different foreground

emissions in our Galaxy is one such scenario. We plan to carry out investigations

along these lines in future. However, we reiterate that the results of this chapter

are not limited to cosmology and can find applications to any practical examples

of composite fields.





Chapter 5

Nature of Non-Gaussianity and

Statistical Isotropy of Haslam 408

MHz Map∗

5.1 Introduction

In modelling and simulating foregrounds at low frequencies, the small-scale fluc-

tuations are generally assumed to be statistically isotropic Gaussian random fields

(GRFs) (Tegmark et al. 2000; Delabrouille et al. 2013; Thorne et al. 2017). For

example, in the commonly used Hammurabi code (Waelkens et al. 2009), the small-

scale (turbulent) Galactic magnetic field (GMF) is approximated as statistically

isotropic and Gaussian distributed. The assumptions of Gaussianity and SI of

∗The work presented in this chapter is published as Rahman et al. (2021)
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the foregrounds at small scales and away from the Galactic plane simplify their

modelling. However, their validity based on physical grounds is not clear.

Since the interactions that govern the Galactic emissions are generally non-linear,

we do not expect that the interaction may be expressed as a small perturbation

term added to an interaction-free physical system. It is not clear that the statis-

tical nature of each foreground component will approach Gaussianity at smaller

scales. It is possible that if we remove the larger scale fluctuations, the fields do

approach Gaussianity as a manifestation of the central limit theorem. However,

it is important to test this as a function of resolution or scale. Further, the fore-

ground fields are obviously anisotropic on the full sky since most of the emissions

come from regions around the plane of the Galactic equator. It is important to

test whether, after masking the Galactic regions, the fields approach SI probing

towards small angular scales.

As we discussed earlier, the all-sky 408 MHz synchrotron map obtained by Haslam

et al. (1981, 1982) has been an important input for modelling the synchrotron in

the CMB component separation methods for WMAP and Planck (Bennett et al.

2013; Ade et al. 2016). Various statistical properties that focus on the two-point

function of this map have been well studied (Cho & Lazarian 2010; Mertsch &

Sarkar 2013). Ben-David et al. (2015) reported that this map is Gaussian at scales

smaller than roughly 3◦, using skewness and kurtosis statistics for the investigation.

Rana et al. (2018) used the bispectrum and MFs to probe the non-Gaussianity of

the Haslam map and reported findings that are in agreement with Ben-David et al.

(2015).

In this chapter, we examine in detail the non-Gaussian nature and SI of the Haslam

map using the Minkowski tensors as a unified statistical tool. Further, we calculate

the generalized skewness and kurtosis cumulants that enter in the perturbative

expansion of scalar MFs for weakly non-Gaussian fields about the zeroth-order
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Gaussian expressions (Matsubara 2010; Matsubara & Kuriki 2020). We compare

the non-Gaussian deviations of the MFs that are obtained using the analytic ex-

pressions with the exact numerical calculations. This comparison allows us to

demonstrate that the perturbative expansions of the MFs about the zeroth-order

forms expected for mildly non-Gaussian fields are valid in the cooler regions of the

Haslam map. Moreover, the leading source of non-Gaussianity is the second-order

perturbation terms, and hence, the kurtosis determines the nature of non-Gaussian

deviations in the Haslam map.

The chapter is organized as follows. We begin our discussions with a brief de-

scription of the pipeline for our analysis and the details about the simulations of

Gaussian maps obtained using the Haslam power spectrum in section 5.2. Sec-

tion 5.3 contains the calculations and our main results. Finally, we summarise

our results and discuss their implications in section 5.4. Appendix 5.A contains a

discussion of the consistency checks between the Haslam map and the simulations.

We show the PDF of the Haslam map in appendix 5.B.

5.2 Analysis pipeline and Gaussian isotropic sim-

ulations

We focus our analysis on cooler parts of the sky by applying different brightness

temperature cuts to mask the regions above the chosen cutoff temperatures. We

also analyse at different angular scales. For this purpose, we process the map

following an appropriate pipeline. For comparison, we also generate 1000 Gaus-

sian isotropic simulations using the Haslam power spectrum. The pre-processing

pipeline and the Gaussian isotropic simulations are described below.
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5.2.1 Masking

Since the main focus of our analysis is the high-latitude regions, we mask the

Galactic plane and other pixels where the emission is very strong. The steps

followed in the mask preparation are described below.

• First, we downgrade the Haslam map from Nside= 512 to 128 as the effective

beam size of the Haslam map is 56′ (Remazeilles et al. 2015). This map has

a mean value of 34.4 K. Then, to avoid the Galactic plane from our analysis,

we mask the pixels with (| b |< 10◦).

• The Loop-I bright structure in the map is masked. This emission is due to a

supernova remnant. The masked region has a ±4◦ width cut around a circle

of radius 58◦ centered at (l,b) = (329◦; 17.5◦).

• Let us denote the brightness temperature cut by uc. Five sky masks are

constructed by applying different choices of uc. Pixels having field values

above uc are set to zero. We carry out the analysis for the values uc =

22, 25, 30, 40, 60 K. Our results will be presented for the cases uc = 25 and

60 K. The effective sky fractions for these masks are 0.74 for uc = 60 K, 0.69

for uc = 40 K, 0.56 for uc = 30 K, 0.41 for uc = 25 K and 0.27 for uc = 22

K .

To minimize the effect of sharp mask boundaries in our results, we apodize the

masks by convolving with Gaussian function with 5◦ FWHM.
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Figure 5.1: Top: The sky-fraction (fsky) as a function of different tempera-
ture cuts (uc) used in our analysis. Bottom: The left panel is the mean-free and
normalized (u/σ0) version of the same map after applying the brightness tem-
perature cut uc = 60K and band-passing with multipole cut ℓc = 30. Excursion
set boundaries are shown in the right panel for different field thresholds (dif-
ferent colours), corresponding to the cut-out patch on the lower left of the left
panel. The boundaries are quite thick due to the choice of large field threshold
bins.

5.2.2 Band-passing

In order to focus our analysis on specific angular scales that we are interested in,

we use a band-pass filter defined as

f(ℓ) =
1

4

{
1 + tanh

(
ℓ− ℓc
∆ℓ

)}{
1− tanh

(
ℓ− ℓ∗

∆ℓ

)}
. (5.1)

This filter is multiplied with the Fourier amplitudes (aℓms), thereby cutting off the

aℓms below a multipole scale ℓc, and above ℓ∗. The upper multipole cutoff (ℓ∗)

is chosen as 180 in accordance with the 56′ beam size of the Haslam map. ∆ℓ

sets the width of the cutoff region of the filter. We use ∆ℓ = 10 for the results

presented in this paper. For a reasonable range of ∆ℓ, we find that the results are
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robust. We vary ℓc to study the statistics of the map at different scales. We have

also used other suitable filters, such as a cosine filter, and our results are found to

be robust.

The final maps, which have undergone the aforementioned pre-processing steps, are

then mean-subtracted and rescaled with the standard deviation. Computations

of tensorial and scalar Minkowski functionals are done on this mean-free, unit

standard deviation version of the Haslam map.

The top panel of figure 5.1 gives the sky-fraction (fsky) left for the analysis after

the application of various temperature cuts (uc) on the map. The bottom left panel

shows the mean-free and normalized (u/σ0) version of the same map obtained after

applying temperature cut uc = 60K, and band-passed with multipole cut ℓc = 30.

The bottom right panel shows the iso-field contours of a slice of the field shown

in the lower left of the left panel. Different colours of the contours correspond to

different field thresholds (ν). The lines are thick due to the choice of large field

threshold bins.

5.2.3 Gaussian isotropic simulations

For the purpose of quantifying the level of non-Gaussianity and anisotropy of the

Haslam map, we compare it with Gaussian isotropic simulations. We generate 1000

Gaussian isotropic simulations using the angular power spectrum of the Haslam

map corrected for cut-sky, pixel and beam correction. This input spectrum is made

the PolSpice† package (Chon et al. 2004). A detailed consistency check carried

out for these simulations is discussed in appendix 5.A. The pre-processing pipeline

discussed in sections 5.2.1 and 5.2.2 is applied to each simulation map so that

both simulation and data maps are identically pre-processed. This is necessary to

†http://www2.iap.fr/users/hivon/software/PolSpice/

http://www2.iap.fr/users/hivon/software/PolSpice/
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ensure that the comparison of the statistics that we compute from the data and

simulation maps makes sense.

5.3 Analysis of Gaussianity and SI of Galactic syn-

chrotron emission - results

This section presents the results obtained from analysing the Haslam map and its

comparison with Gaussian isotropic simulations.

5.3.1 Spectra of the Haslam map

We first discuss the spectral parameters σ0 and σ1, and their ratio rc ≡ σ0/σ1.

Given the mean-free field u, σ0 ≡
√

⟨u2⟩ and σ1 ≡
√

⟨|∇u|2⟩. The top panels of

figure 5.2, show σ0 (left) and σ1 (right) for varying ℓc, for the Haslam map for

different values of uc. The mean over 1000 Gaussian simulations is also shown

along with the 1σ error bars. We can see that both σ0 and σ1 decrease with a

decrease of uc and towards higher ℓc, indicating a drop in the level of fluctuations

of the field and its gradient, as we go to lower temperatures as well as smaller

scales. Moreover, both these parameters for the Haslam map fall within 1σ error

bars obtained from Gaussian simulations. This is expected as the simulations are

generated from the power spectrum of the Haslam map and validate the correctness

of these simulations.

The bottom panels show rc. This quantity gives a measure of the typical size of

structures in the field. The left panels show rc for both uc = 60 and 25 K, so

as to enable their visual comparison. We see that higher uc has slightly larger
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Figure 5.2: Top: σ0 (left) and σ1 (right) of the Haslam map for uc = 60 K
(red diamond) and 25 K (green circle) as a function of ℓc. Mean and 1σ error
bars obtained from 1000 Gaussian isotropic simulations are also shown. Since
the simulations are obtained using the power spectrum of the Haslam data, σ0
and σ1 for the observed data and simulations match within 1σ, as expected.
Bottom: The left panel shows the correlation length, rc ≡ σ0/σ1 versus ℓc for
uc = 60 K and 25 K. The middle panel shows rc for uc = 60 K fitted with two
different power-law functions towards the low and high ℓc regimes, indicating
a transition in the nature of the field at the intermediate ℓc scales. The right
panel shows rc for uc = 25 K fitted by a single function.

structures towards lower ℓc. This indicates that if we include sky regions with

higher temperatures, then there are larger regions having correlated temperature

values. rc also decreases with increasing ℓc, which is expected due to the subtrac-

tion of large-scale fluctuations and the fact that σ0 decreases faster than σ1. We

have fitted the fall of rc with respect to ℓc with power-law functions (shown in the

middle and right bottom panels of figure 5.2). For uc = 60 K, we could fit it with

two functions at low ℓc region and high ℓc region. This indicates a transition in

the nature of the field at the intermediate scales. For uc = 25, we are able to fit rc

with a single function. This could be a hint to the difference in the nature of the
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Figure 5.3: Skewness and kurtosis cumulants (defined in section 3.3.1) of the
Haslam map for the case of temperature cut values uc = 60K (red) and uc = 25K
(green), plotted as functions of the multipole cut ℓc. Different line types for
each colour represent different values of sm, and the associated sky fraction. All
kurtosis cumulants have values larger than the skewness ones, indicating that
the non-Gaussianity of the map is predominantly sourced by kurtosis terms.

field in the cooler regions (lower uc) of the synchrotron sky, as seen in our further

analysis.
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5.3.2 Skewness and kurtosis of the Haslam map

In order to probe the non-Gaussian nature of the Haslam map, we next analyse

the skewness, Si, and kurtosis cumulants, Ki, defined in eqs. (3.17) and (3.18).

Since σ0 varies with ℓc, we interpret the cumulants with the appropriate power of

σ0 multiplied to them, i.e., Siσ0 and Kiσ
2
0. These quantities are the coefficients

of the Hermite polynomials in the expressions for the first and second-order non-

Gaussian deviations of the MFs, up to numerical factors. Hence, it is meaningful

to compare them directly.

To minimize the errors arising from the mask boundary on the calculation of Siσ0

and Kiσ
2
0, and the scalar and tensorial MFs, we must stay sufficiently far away from

the boundary. Upon smoothing the binary mask, pixels near the mask boundaries

acquire values between zero and one. A rough estimate shows that for any smooth-

ing scale, θs, a pixel value > 0.89 on a smoothed mask is approximately equivalent

to > 2θs angular distance from the mask boundary. We introduce a parameter,

sm, to control how far away a smoothed mask pixel is from the boundary. sm

takes values in the range of zero to one. Pixels for which the smoothed mask has

values > sm are included in the calculations. As sm increases towards one, the sky

fraction will decrease, thereby decreasing the statistical significance of the results.

Hence, an optimum value of sm has to be chosen so as to minimize the numerical

error and maximize the statistical significance.

Figure 5.3 shows Siσ0 (left column) and Kiσ
2
0 (right column) as functions of the

multipole cut ℓc, for uc = 60K (red lines) and 25K (green lines). The results

are shown for different values of sm. The inset boxes show the zoomed-in plots

towards higher ℓc values. For lower ℓc, we see a large variation of the cumulants

with sm. Towards higher ℓc, they show approximately convergent behaviour for

the larger sm values, indicating that the effect of the mask boundary is minimized.

Therefore, we will interpret the non-Gaussian behaviour of the Haslam map using
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sm = 0.9, for which the cumulants are shown by dot-dash lines in the plots.. The

results for the cumulants are as follows:

• All four kurtosis cumulants have values whose magnitudes are considerably

larger than those of the skewness ones, for both values of uc and for all

ℓc. This corroborates our inference from visual inspection of the probability

distribution functions (PDFs) of the Haslam map shown in figure 5.B.1 in

appendix 5.B.

• Siσ0 show clear decrease both with decreasing uc and towards high ℓc. We

see that S0σ0 and S1σ0 show rough oscillatory behaviour up to intermediate

values of ℓc. Towards high ℓc, all three Siσ0 decrease monotonically.

• All the kurtosis cumulants also decrease from higher to lower values of uc,

and at all ℓc. Towards high ℓc, the magnitudes of all the Kiσ
2
0 show a mild

monotonic decrease, except K2σ
2
0 which appears to saturate at a small but

finite value. K0σ
2
0 and K1σ

2
0 also exhibit rough oscillatory behavior similar

to skewness parameters.

Based on the above points, we conclude that the nature of non-Gaussianity of

the Haslam map at the range of scales probed here is predominantly sourced by

kurtosis terms. Moreover, at smaller scales, the field shows convergence towards

Gaussian behaviour. However, we note that it is important to probe down to even

smaller scales, which is not feasible with the Haslam map. The next subsection will

discuss the level of non-Gaussianity measured using the Minkowski functionals.

Although beyond the scope of this paper, from the behaviour of the skewness

and kurtosis parameters as functions of ℓc, it will be interesting to investigate

further whether one can identify physically interesting scales associated with the

distribution of cosmic rays and free electrons, and the properties of the GMF.
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Figure 5.4: Scalar MFs of the Haslam map for uc = 60 K (red diamonds)
and uc = 25 K (green circles), for ℓc = 50. The ensemble mean and 1σ width
obtained from 1000 simulated maps are also plotted to show the deviation.

5.3.3 Scalar Minkowski functionals for the Haslam map

We compute the scalar MFs using methods 1 and 2 described in sections 3.3.2.1

and 3.3.2.2, for the Haslam and the simulated Gaussian isotropic maps. We refer to

the results of these calculations as ‘exact numerical results’. We use the threshold

range −4 ≤ ν ≤ 4 with a bin size of ∆ν = 0.5. We show our results for the mask

boundary threshold value sm = 0.9, as discussed in section 5.3.2. The results for

uc = 60 K and 25 K for the intermediate scale ℓc = 50 are shown in figure 5.4.

The deviations of V Haslam
k from the Gaussian mean values are easily discerned by

eye.

In order to quantify the difference of the MFs between the Haslam map and the

Gaussian simulations, we define

∆Vk ≡ V Haslam
k − V G

k , (5.2)

where the superscript ‘Haslam’ refers to the Haslam map and ‘G’ stands for Gaus-

sian simulation. For every k, we compute ∆Vk, normalized by the amplitude of

V G
k (indicated by superscript ‘max’), for each Gaussian isotropic realization.
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Figure 5.5: The deviations, ∆Vk/V
G,max
k , of the three MFs for Haslam data

from Gaussian expectation for uc = 60K (red solid lines) and uc = 25K (green
solid lines) are shown for ℓc = 50, 70, 90. We use sm = 0.9 for these results. The
black lines correspond to the results obtained using perturbative expansion of
MFs with only first-order terms (dotted lines), only second-order terms (dashed
lines), and the sum of first- and second-order (solid lines). The dashed and solid
black lines almost overlap since the contributions from the first-order terms are
small.
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Figure 5.5 shows the ensemble mean and 1σ error bars of the normalized ∆Vk for

uc = 60 K (red solid lines) and uc = 25 K (green solid lines), and for ℓc = 50, 70, 90

(top to bottom rows). For uc = 60 K, the error bars are relatively smaller and,

hence, hard to see by eye. All the plots shown in figure 5.5 are obtained using

method 1. We obtain almost identical results from calculations using method 2.

We summarize our findings from the exact numerical calculations as follows:

• The deviations have a characteristic shape as functions of the threshold.

The overall amplitude of the deviations decreases as uc is decreased while

the shape is approximately maintained. This indicates that masking out

very high-intensity regions, which correspond to values on the positive tail

of the PDF of the field, makes it tend towards Gaussian nature. The nature

of the non-Gaussian deviation of the field approximately remains the same

even as we mask more high-temperature regions (decreasing uc) and towards

small angular scales (increasing ℓc).

• As we increase ℓc, the number of structures (equivalently, fluctuations of the

field per unit area on the sphere) increases. As a consequence, the error bars

on ∆Vk decrease with increasing ℓc. Therefore, even though the amplitude

of the deviations decreases with increasing ℓc, the statistical significance of

the deviations does not decrease proportionately and can remain high. This

is particularly evident in the case of uc = 60. At each ℓc and each ν, the

error bar for uc = 25 is generally higher than 60 because of the lower sky

fraction.

• Lastly, we compare ∆Vk obtained from method 1 and 2. As mentioned ear-

lier, method 1 contains small numerical inaccuracies due to the discretization

of the δ function. However, when subtracting between the MFs obtained from

the Haslam map and the Gaussian simulations, these numerical errors will

mostly cancel out. A small part can still remain because the Haslam map is

non-Gaussian, particularly for higher uc and lower ℓc values. In comparison,
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method 2 is free of these errors. We obtain very similar results for ∆Vk from

method 2, indicating that the residual numerical errors for method 1 are in-

significant and can be ignored. Another important point to mention is that

we obtain marginally higher error bars from method 1, compared to method

2. The reason for this is the shot noise arising from the discrete harmonic

transform associated with calculating field derivatives.

Next, we discuss the results obtained using the perturbative formulae of MFs given

in section 3.3.1 and compare them with the exact numerical results. To do so, we

define

∆V
(1),pert
k = Akv

(1)
k , (5.3)

∆V
(2),pert
k = Ak v

(2)
k , (5.4)

∆V total,pert
k = Ak

(
v
(1)
k + v

(2)
k

)
, (5.5)

where k = 0, 1, 2, and Ak is the amplitude of the analytic expressions for MFs

for the Gaussian case. The superscript ‘pert’ refers to the perturbative expansion

described in section 3.3.1. For consistency with the exact numerical case, we

normalize them by V G,max
k (which is not always the same as Ak). In figure 5.5,

the first-order results are shown by dotted black lines, the second-order by dashed

black lines, and the total by solid black lines. First, for uc = 60K (top panels

accompanying the red plots), we can see that the first-order deviations for which

skewness cumulants contribute are much smaller than the second-order deviations

for which kurtosis cumulants contribute. As a consequence, the plots for the

second-order and total deviations nearly overlap. Secondly, the total deviations

up to second-order overestimate the amplitude of the deviations of all three MFs by

over a factor of two, but the shape roughly agrees (as indicated by the location of

zeros, peaks and troughs). This remains so even at high ℓc. Therefore, we conclude

that for uc = 60K, the Haslam field is highly non-Gaussian even at the smallest
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scales probed here. Hence, it is not meaningful to consider it as a Gaussian field

plus a small non-Gaussian component.

In the lower panels of figure 5.5, we show the case of uc = 25 K. We again find

that the first-order deviations are smaller than the second-order for all MFs and

all ℓc values considered here. So, the main contribution to the non-Gaussian

behaviour of the relatively cooler signals of the Haslam map comes from the four

kurtosis cumulants. Secondly, a good agreement is obtained between the non-

Gaussian deviations of MFs obtained using analytical and numerical methods. The

amplitude of the non-Gaussian deviations decreases as ℓc increases, indicating that

the field approaches Gaussian behaviour at smaller scales. Therefore, we conclude

that the cooler regions of the Haslam map can be well approximated as a mildly

non-Gaussian field. The nature of the mild non-Gaussianity, however, does not

significantly vary with angular scale, as implied by the shape of the deviations of

the MFs. Our analysis with other temperature cuts for the cooler regions, such as

uc = 22 K and uc = 30 K, shows trends similar to what is observed with uc = 25

K. We are planning to do a detailed study on these regions in our future works,

to understand more on the nature of synchrotron non-Gaussianity.

A visual comparison of figure 5.5 with the plots in figure 3.4 shows that the non-

Gaussian nature of the Haslam map is similar to the local type gNL non-Gaussianity

of primordial inflationary fluctuations. This indicates the presence of an approxi-

mate parity symmetry in the fluctuations of synchrotron radiation.

5.3.3.1 Quantifying the level of non-Gaussianity

To quantify the statistical significance of the non-Gaussian deviations for Vk, we

compute the difference between each statistic computed for Haslam data and its

mean value obtained from Gaussian isotropic simulations in units of the standard
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Figure 5.6: χ2
Vk

is shown as a function of threshold for each scalar MFs for
uc = 25 K, for different ℓc. It is seen that χ2

Vk
gets close to 3-σ for all thresholds

as we increase ℓc. This indicates that the level of non-Gaussianity decreases as
we remove more bright regions as well as large-scale structures in the Haslam
map.

deviation. This is encapsulated by χ2 which is defined, at each threshold ν, as

follows,

χ2
Vk
(ν) =

(
V Haslam
k (ν)− V

G

k (ν)
)2

σ2
V G
k
(ν)

(5.6)

We compute χ2
Vk

for all the values of uc and ℓc that we consider here. We will not

show χ2 for uc = 60 K since there is a high level of non-Gaussianity, and it is not

meaningful to compute deviations from Gaussian expectation.

For each of the three scalar MFs, χ2 for the case of uc = 25 K are shown in figure

5.6. The line for χ2 = 9, which corresponds to 3σ is shown by the black dotted

line for reference. Note that except for the case of V0, the y-axis scales for the top

panels showing ℓc = 50 are different from the lower panels.
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We observe that for all three MFs, χ2 values decrease towards ℓc = 120. The rate

of decrease, however, varies. For V0, the χ2 values are higher than 9 for most

threshold values, at all ℓc. For both V1 and V2, the values of χ2 decrease as ℓc

increases and for ℓc = 120, are smaller than 3σ for all threshold values (except at

ν = −1.5 where it is higher than 9 for V2).

We get the value of χ2 for V0 averaged over all threshold values for ℓc = 120 is

11.08, corresponding to the statistical significance of 3.3σ. Therefore, from the

behaviour of V0, we conclude that the Haslam map for uc = 25 K is mildly non-

Gaussian with statistical significance 3.3σ. The nature of the non-Gaussianity is

of the kurtosis type given by the cumulant K0 since the non-Gaussian deviation

of V0 is determined by K0.

5.3.4 Statistical isotropy of the Haslam map

Next, we discuss the results for W1. We again quantify the difference between the

Haslam map and the Gaussian simulations as follows:

∆W1 ≡ WHaslam
1 −WG

1 , (5.7)

∆α ≡ αHaslam − αG, (5.8)

where WG
1 and αG are the values obtained from the Gaussian simulations, while

the superscript ‘Haslam’ refers to the values for the Haslam map. As in the

previous case, the deviations ∆W1 and ∆α are normalized with WG,max
1 and αG,max,

respectively. We compute them for each Gaussian isotropic simulation.

We show the results in figure 5.7. The diagonal elements of W1 (left and middle)

and α for uc = 60 and 25 K, for ℓc = 50 K are shown in the top row. The colour

coding is the same as in figure 5.5. The mean values obtained from the 1000
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Gaussian isotropic simulations corresponding to each uc are shown by the solid

lines, along with the 1σ regions. The ensemble mean of the diagonal elements

of ∆W1, along with 1σ error bars, are shown in columns one and two of the

lower panels, for the same values of uc and for ℓc = 50, 70, 90. The physical

information that can be deciphered from the elements of ∆W1 is similar, up to

statistical fluctuations, as ∆V1, and we find that the behaviour is the same, as

expected. Ensemble mean and 1σ error bars of ∆α are shown in the third column

of figure 5.7 for the same values of uc and ℓc. We observe that ∆α is smaller

for smaller uc, implying that the field becomes more isotropic when the warmer

regions are excluded. This corroborates what we infer from visual inspection that

high-intensity regions have large-scale correlations that appear to be direction-

dependent.

Next, to proceed with the quantification of the statistical significance of any de-

viation from SI of the Haslam map, we take into consideration the fact that the

probability distribution of α statistic is Beta distribution (Chingangbam et al.

2021) which has the following form,

P (α) =
Γ(a+ b)

Γ(a)Γ(b)
αa−1(1− α)b−1. (5.9)

Here, the parameters a and b take positive values, which are determined by the

physics of the emission. Due to this reason, for accurate quantification of the

statistical significance of deviation from SI, we use the median value of α, denoted

by α̃G obtained from the 1000 simulations along with the 95% confidence interval.

Our analysis shows that the values of mean and median differ by less than 1% at

all threshold values. Let us denote the 95% confidence interval about the median

by [δ1, δ2]. For each threshold, we determine δ1 and δ2 such that they satisfy

∫ α̃G

α̃G−δ1

dαP (α) =

∫ α̃G+δ2

α̃G

dαP (α) = 0.475. (5.10)
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Figure 5.7: The first row shows the two diagonal components of tensor MF,
W1 and the anisotropy parameter, α for two temperature thresholds uc = 60 K
and uc = 25 K (red diamonds and green circles, respectively) for ℓc = 50. The
ensemble mean and 1σ width from 1000 simulated maps are also plotted to show
the deviation. Note that, for α, the threshold range is (-3:3). The remaining
rows represent the ensemble mean and 1σ width of the deviations, ∆W1 and
∆α with respective normalizations, for uc = 60K (red solid lines) and uc = 60K
(green solid lines), for ℓc = 50, 70, 90.
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Figure 5.8: χ̃ values of ∆α̃ at each threshold values for uc = 60K (top panel)
and uc = 25K (bottom panel), and for ℓc = 50, 90, 120. Lines corresponding to
|χ̃| = 1 (95% confidence interval) are marked for reference.

Let ∆α̃ ≡ αHaslam − α̃G. We define χ̃ at each threshold to quantify the statistical

significance of ∆α̃. χ̃ is given as,

χ̃ =


∆α̃
δ1
, if ∆α̃ < 0,

∆α̃
δ2
, if ∆α̃ > 0.

(5.11)

For a Gaussian case, χ̃ is equivalent to the square root of the commonly used

chi-squared statistic. |χ̃| > 1 implies αHaslam is outside the 95% confidence interval

and, hence, exhibits statistically significant deviation from the simulations. The

sign of χ̃ contains useful information – if it is negative, it means more anisotropic,

while positive values mean more isotropic than the median value. If the threshold

bin size is sufficiently large, α at neighbouring thresholds are uncorrelated. The

value ∆ν = 0.5 that we have chosen is sufficiently large and hence, we can neglect

the correlations.
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Figure 5.8 shows χ̃ versus threshold values, for different uc and ℓc. Lines corre-

sponding to |χ̃| = 1 are marked for reference. For uc = 60 K, we find that χ̃

is negative for almost all threshold values for all ℓc, which is due to αHaslam be-

ing smaller than α̃G. This implies that the Haslam map is genuinely anisotropic

in comparison to the isotropic simulations. Further, we observe that χ̃ becomes

smaller as ℓc increases, indicating that the statistical significance of the anisotropy

decreases at smaller angular scales. Hence, the small-scale fluctuations of the field

tend to follow isotropic distribution. For the case of uc = 25 K, we see that |χ̃| ≤ 1

for most thresholds and the values fluctuate between positive and negative values

for all ℓc. Therefore, after excluding the warmer regions of the field (decreasing

uc), we find that the Haslam map exhibits isotropic behaviour even at relatively

large scales.

5.4 Summary of results and their implications

Using scalar Minkowski functionals and Minkowski tensors, we have carried out

a careful investigation of the statistical properties of one of the major foreground

components, namely the Galactic synchrotron given by the full sky 408 MHz

Haslam map. The results are summarized as follows.

• Firstly, we find that the overall level of non-Gaussian deviations does de-

crease as more high-emission regions are masked and as we go down to

smaller scales. This is not a new result and corroborates findings in earlier

works.

• Our analysis reveals that the leading source of non-Gaussianity of the Haslam

map, at all scales, arises from kurtosis terms, with skewness being sub-

dominant. We demonstrate that in the cooler regions of the Haslam map, the

non-Gaussian deviations of MFs agree very well with analytic perturbative
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expressions, keeping up to kurtosis terms or second-order in the standard

deviation of the field.

• The level of non-Gaussianity at the smallest angular scales of ∼ 1.5◦ corre-

sponding to ℓc = 120 probed by the Haslam map has a statistical significance

of 3.3σ. This is determined by the area fraction, V0, which has dependence

only on one kurtosis cumulant, K0. Hence, we conclude that the assumption

of Gaussian fluctuations in the synchrotron simulations is not appropriate

at this scale. It is, therefore, important to analyse higher-resolution syn-

chrotron maps to determine the validity of the Gaussian approximation at

scales smaller than the Haslam scale.

• Lastly, we test the SI of the Haslam map and find that it becomes increas-

ingly more isotropic in the cooler regions of the map as well as at smaller

angular scales. This implies that the usual assumption of SI at small scales in

component separation methods is supported by the properties of the Haslam

map.

It is interesting to note that the shape of non-Gaussian deviations of the MFs for

the Haslam map is reminiscent of curvaton models of inflation where the leading

contribution for non-Gaussianity comes from terms containing cubic self-coupling

of perturbations with coupling parameter gNL (see for example, Enqvist & Taka-

hashi (2008)). As a consequence, we can expect that any residual Galactic syn-

chrotron contamination in the CMB will predominantly bias constraints on gNL.

Our results indicate that it may be possible to model the Galactic synchrotron

fluctuations at smaller scales, along the lines of inflationary perturbations, as an

effective field that can be expanded as a Gaussian component plus a small per-

turbation of the type δI(x⃗) ≃ δI(G)(x⃗) + gNL

(
δI(G)(x⃗)

)3. Here, ‘G’ stands for the

Gaussian component. We expect that gNL can be related to small-scale fluctu-

ations of the GMF and the distribution of relativistic cosmic ray electrons and,
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hence, will be useful in constraining them. We will address this issue in the near

future.

Our results also imply that any residual synchrotron component that contaminates

the CMB will most likely not be captured by estimators of non-Gaussianity, such as

the bispectrum. Instead, it can be revealed by trispectrum or real space statistics

such as MFs. Therefore, it is necessary to analyse foregrounds using a multitude

of complementary statistics to uncover their true statistical nature. Further, it is

important to probe non-Gaussianity and SI of foreground fields at scales smaller

than the resolution of the Haslam map. It is also important to probe different

Galactic components at frequencies ranging from radio to infrared, such as done

by Coulton & Spergel (2019) using the bispectrum. We plan to carry out a detailed

investigation of the non-Gaussian nature and SI of different foreground components

at different frequencies relevant to the CMB, EoR and line intensity mappings

using Minkowski tensors and trispectrum.



Appendix

5.A Consistency checks of the Gaussian simula-

tions with Haslam data

Gaussian isotropic simulations of the Haslam map are obtained to quantify the

statistics explored in this work. The power spectrum of the Haslam map is gen-

erated using PolSpice (Szapudi et al. 2001; Chon et al. 2004). It gives the full

angular power spectrum of any given map corrected for masking, beam and pixel

effects and the residuals via the incomplete sky coverage. This power spectrum

acts as input for generating Gaussian isotropic simulations using HEALPIX subrou-

tines. In essence, the Haslam data and simulations are expected to match at the

power spectrum level, and it is crucial to check the consistency of these simulations

with respect to the data.

Using anafast subroutine of HEALPIX package, the pseudo power spectrum (Cℓ) is

computed for Haslam data and 1000 simulations after following the pre-processing

pipeline discussed in section 5.2. In figure 5.A.1, the binned power spectra of the

data as well as the mean Cℓ and 1σ error bars from the simulations are shown

for two of the masks (uc = 60K & 25 K) used in our analysis. It is found that

the power spectrum for Haslam data and Gaussian isotropic simulations match
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Figure 5.A.1: The binned angular power spectrum Cℓ for the Haslam data and
simulations obtained using anafast subroutine for two different sky fractions
used in our analysis. The blue cross denotes the binned Cℓ for Haslam data,
while the red error bars indicate 1σ width of binned Cℓ from 1000 Gaussian
isotropic simulations. It is seen that 1σ matching is obtained for both the sky
fractions. This confirms the accuracy of the power spectrum computed using
PolSpice and, therefore, the credibility of our results compared with respect to
the 1000 Gaussian isotropic simulations.

within 1σ in both cases. This confirms that the computation of the Haslam power

spectrum using PolSpice is sufficiently accurate and, therefore, the credibility of

our results compared with respect to the generated Gaussian isotropic simulations.

5.B Probability distribution function of the Haslam

map

It is helpful to visualize the PDF of the Haslam map along with those of Gaussian

simulations for different temperature and multipole cut values. To do so, we first

define ν ≡ u/σ0 which is the field value normalized by the σ0 value, for each ℓc. In

figure 5.B.1, the PDFs of the Haslam map are shown as red diamonds for uc = 60
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Figure 5.B.1: The PDFs for the Haslam map and 1000 Gaussian simulations
for different values of uc and ℓc. The PDFs visually indicate approximate sym-
metry about the field mean value zero and decreasing levels of deviation with
respect to the Gaussian expectations, with decreasing uc and towards higher ℓc.
These results are obtained using the mask boundary threshold value, sm = 0.9.

K and green circles for uc = 25 K, using the mask boundary threshold value,

sm = 0.9. Visually, we find approximate symmetry about the field mean value

zero and decreasing levels of deviation with respect to the Gaussian expectations,

with decreasing uc and increasing ℓc. From this figure, we can anticipate that the

kurtosis cumulants will have larger values compared to the skewness ones, support-

ing our observation that the nature of Haslam non-Gaussianity is predominantly

of kurtosis origin.





Chapter 6

Multi-frequency Statistics of

Synchrotron Temperature and

Polarization Maps∗

6.1 Introduction

In the previous chapter, we carried out a detailed examination of the small-scale

non-Gaussianity of the all-sky 408 MHz Haslam synchrotron map using scalar

Minkowski functionals (MFs) and Minkowski tensors (MTs). Our analysis shows

that within the limited resolution of the Haslam map, the level of synchrotron

non-Gaussianity is not low enough to assume Gaussianity. However, there is a de-

creasing trend towards smaller scales. On the other hand, statistical isotropy (SI)

∗The chapter is based on the work which has been accepted for publication in JCAP. The
pre-print is available as Rahman et al. (2022)
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was found to be valid at Haslam resolution. We also found that non-Gaussianity

at small scales is kurtosis-type.

In this chapter, we extend this analysis and focus attention on the morphological

properties of observed synchrotron temperature and polarization maps provided

by WMAP (Bennett et al. 2013), Planck (Planck Collaboration et al. 2020a) and

BeyondPlanck (BeyondPlanck Collaboration et al. 2020). For comparison, we also

include the combined map of the 1.4 GHz radio continuum survey from Stockert

and Villa-Elisa telescopes (Reich & Reich 1986; Testori et al. 2001). We analyse

various all-sky maps observed at frequencies from 1.4 GHz to 33 GHz and make

a comparison with the Haslam map. We also compare with simulated foreground

maps given by the Python Sky Model (PySM) (Thorne et al. 2017). Then, we

study the synchrotron maps given by different component separation pipelines of

WMAP, Planck, and BeyondPlanck. The main objective of this work is to examine

whether the statistical features of synchrotron radiation are frequency-dependent

and to compare the non-Gaussian and SI nature of these observed synchrotron

maps with previous results of the Haslam map. A similar analysis focusing on

synchrotron polarization was carried out in a recent work by Martire et al. (2023).

The chapter is organized as follows. We begin with a short description of the data

sets used in this work in section 6.2. In section 6.3, we explain the data analysis

pipeline we adopt. Section 6.4 contains the results for the morphology of total fore-

ground maps at different observing frequencies and comparison with simulated to-

tal foreground maps. Section 6.5 includes the results for the component-separated

synchrotron temperature and polarization maps. In section 6.6, we conclude the

chapter with a summary and discussion of our results. Appendix 6.A describes the

estimation of instrumental noise for different experimental setups and maps. In

appendix 6.B, we estimate the signal-to-noise ratio (SNR) of WMAP and Planck

total foreground maps. In appendix 6.C, we discuss the possible contribution of
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instrumental systematics in our results. Lastly, appendix 6.D discusses the mor-

phology of two composite fields – synchrotron plus AME and synchrotron plus

free-free.

6.2 Data sets used

In this section, we describe the data sets used in this work. We also describe

Gaussian simulations and simulations of foreground emissions given by PySM.

There are various publicly available data sets for observations of diffuse emissions

in the frequency range of the order of 100 MHz to 100 GHz. For our study here,

we choose data sets that have full sky coverage. The particular data sets that are

used in our analysis are given below†.

6.2.1 All-sky temperature maps at different frequencies

The observed temperature data at specific frequencies (ν)‡ in the range 0.408 to

33 GHz that we analyse (see section 6.4) are the following.

1. The Haslam 408 MHz map (Haslam et al. 1982) is used as the fiducial map

which other data sets are compared with. We use the map provided by

Remazeilles et al. (2015).

†Data sets are taken from
https://pla.esac.esa.int/
https://lambda.gsfc.nasa.gov/
https://beyondplanck.science/

‡In this chapter, the symbol ν denotes the frequency of the maps we are looking at, but
in other chapters, it stands for the threshold values. Also, in this context, νt represents the
threshold values.

https://pla.esac.esa.int/
https://lambda.gsfc.nasa.gov/
https://beyondplanck.science/
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2. The combined all-sky map at 1420 MHz from the northern sky survey using

Stockert 25 m telescope (Reich & Reich 1986) and the southern sky survey

with 30 m Villa Elisa telescope (Testori et al. 2001). We refer to this map

as the Stockert-Villa map.

3. WMAP K band (23 GHz) and Ka band (33 GHz) maps (Bennett et al. 2013).

4. Planck 30 GHz map from PR3 data release (Planck Collaboration et al.

2020a).

We will refer to these as frequency maps. These maps contain all components

of Galactic emissions, with the contribution of each component varying with the

observing frequency.

6.2.2 Component separated temperature and polarization

synchrotron maps

We use the synchrotron maps given by different component separation algorithms

in WMAP and Planck experiments. The temperature maps are listed as follows:

1. WMAP synchrotron map at K-band derived using Maximum Entropy Method

(MEM): MEM is a pixel-based Bayesian model-fitting technique assuming a

spectral model for different Galactic components and using external data sets

as priors (Bennett et al. 2003). Here, the synchrotron spectrum is considered

as a power law with spectral index βs = −3.0, and the Haslam map is used

as the external prior template for synchrotron emission.

2. WMAP synchrotron map obtained using MCMC technique: This is the stan-

dard MCMC approach of sampling the posterior distribution given the data
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sets and a data model (Hinshaw et al. 2013b). The sky model is constructed

based on the spectral features of different astrophysical components. Apart

from the 5 WMAP frequency bands, the Haslam map is also included in the

data analysis. Different MCMC maps are available based on slightly different

assumptions in modelling foreground spectra, which are summarised below.

• MCMC-c — follows a power-law spectrum for synchrotron, free-free,

and thermal dust emissions, with the synchrotron and dust spectral

indices as free parameters.

• MCMC-e — includes spinning dust emission, but the synchrotron spec-

tral index is fixed to −3.

• MCMC-f — similar to MCMC-e, except that the synchrotron spectral

index is allowed to have spatial variation, with the spectrum taking a

pure power law form.

• MCMC-g — similar to MCMC-f with the synchrotron spectral index

varying as a function of frequency according to Strong et al. (2011),

instead of a pure power-law.

3. Planck synchrotron map derived using Commander pipeline: Commander in-

volves standard Bayesian formalism of fitting an explicit parametric sky

model to the data and computing the joint posterior distribution. These

parameters, corresponding to CMB as well as astrophysical components,

are then estimated at each pixel by sampling the posterior via Gibbs sam-

pling (Eriksen et al. 2008). In addition to Planck HFI and LFI data, the

nine-year WMAP sky maps and the Haslam map are also used as exter-

nal data sets to disentangle the degeneracy between different low-frequency

Galactic components.

4. BeyondPlanck synchrotron map: BeyondPlanck is an end-to-end Bayesian

technique that together takes care of instrument characterization, map-

making, and component separation, using a single statistically consistent
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data model (BeyondPlanck Collaboration et al. 2020). It is implemented

as Commander3, an extended version of the Commander pipeline, applied to

time-ordered data (TOD). In this analysis, Planck LFI data sets, along with

Haslam and Planck dust maps, are used as input maps.

For polarization studies, we use the synchrotron maps given by WMAP MCMC-g

and Planck Commander methods. Although other polarized foreground components

like thermal dust are negligible in the low-frequency bands of WMAP and Planck,

polarization maps are dominated by noise, and we use component-separated maps

to minimize the bias due to it.

6.2.3 Simulated data

We use two kinds of simulated data for the analysis. Brief descriptions of the

simulations are given below.

6.2.3.1 Gaussian Simulations

For quantifying the non-Gaussianity and anisotropy of a given map whose prop-

erties are a priori unknown, we need to compare with suitable Gaussian isotropic

simulations. In this work, we generate these simulations by calculating the an-

gular power spectrum of the given map and then using it as input for produc-

ing Gaussian isotropic maps. The angular power spectra are obtained using the

NaMaster§ package, which corrects for leakage due to masking, instrumental beam

and pixelation effects (Alonso et al. 2019). Although the given map may contain

non-Gaussian and anisotropy features, by using its power spectrum as input to

§https://github.com/LSSTDESC/NaMaster

https://github.com/LSSTDESC/NaMaster
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produce Gaussian isotropic maps, we ignore the non-Gaussianity and anisotropy.

We produce 1000 such maps with the synfast function of the healpy¶ package.

These simulations accurately replicate the given map at the power spectrum level

and serve as Gaussian isotropic equivalents of the map being analysed.

6.2.3.2 PySM simulated temperature maps

The Python Sky Model (PySM) is a publicly available software package‖ for simu-

lating foreground emissions in intensity and polarization at microwave and sub-mm

frequencies (Thorne et al. 2017). It provides simulations of the different foreground

components. Though our analysis in this paper primarily focuses on synchrotron,

other foreground emissions, like free-free and AME emissions, are also relevant

when we study the observed data at different frequencies. For this reason, below

we discuss the models of the synchrotron, free and AME incorporated in PySM

that are relevant to our analysis here. PySM provides high-resolution maps of

foreground emissions well above the resolution of the template maps used. This

is prepared by injecting Gaussian isotropic fluctuations into these maps at small

angular scales∗∗. For further details, see Thorne et al. (2017). Note that we discuss

simulations for temperature only. We do not make use of polarization simulations

as we do not carry out an analysis of the frequency variation of polarization maps.

¶https://healpy.readthedocs.io/
‖https://pysm3.readthedocs.io/

∗∗Different approaches are adopted to add small-scale information in foreground maps. For
example, in Delabrouille et al. (2013); Remazeilles et al. (2015), for synchrotron, Gaussian ran-
dom field Gss is generated using a power-law model of power spectrum that fits well with the
observational data. Thorne et al. (2017) adds a log-normal distributed map for synchrotron at
small scales to ensure that the final map has positive values. The free-free power spectrum is
flatter than the synchrotron, so a direct extrapolation using the angular power spectrum re-
sults in excess power at small scales. Instead, the gradient of the free-free power spectrum is
fixed as γ = −0.5, and this power spectrum is used to generate the Gaussian realizations. The
high-resolution thermal dust maps are used as a proxy for AME at small angular scales.

https://healpy.readthedocs.io/
https://pysm3.readthedocs.io/
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Synchrotron simulations: Synchrotron temperature spectrum is modelled as a

power-law scaled to the 408 MHz all-sky Haslam map using the following relation,

Iν(n̂) = I0.408(n̂)
( ν

0.408

)βs(n̂)

, (6.1)

where Iν is the amplitude of the map at frequency ν (in GHz). βs is the spatially

varying synchrotron spectral index and I0.408 is the amplitude of Haslam map. The

above equation gives different models based on how βs is modelled. We consider

the three main PySM models of βs in our analysis, which are explained below:

1. Model s1: A spatially varying βs is assumed based on the all-sky spectral in-

dex map ‘Model 4’ of Miville-Deschênes et al. (2008), prepared using WMAP

and Haslam synchrotron maps and a model of Galactic magnetic field. The

variation of βs with frequency is not considered here.

2. Model s2: This model takes into account only the spatial steepening of βs

away from the Galactic plane; βs is a function of the Galactic latitude b, given

by the relation βs = βb=0 + δβ sin |b|, in accordance with WMAP. Again, β

does not vary with frequency.

3. Model s3: This model takes into account the curvature of βs above a certain

frequency νc, given as βs = β0 + C ln(ν/νc). The spatial variation is given

by β0, which follows the same model as in s1. The curvature parameter C

is 0.052 with νc = 23 GHz (Kogut 2012).

Figure 6.2.1 shows maps of βs for models s1 and s2. Model s3 does not differ

from model s1 in morphology; hence, we have not shown it. Further, Gaussian

isotropic realizations are directly injected into the Haslam map to enhance the

small-scale information.
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Figure 6.2.1: The synchrotron spectral index (βs) maps for PySM models s1
(left) and s2 (right).

Free-free simulations: We follow the PySM free-free model called f1. This

is the analytical model for free-free emission given in Draine (2011) and used in

the Commander analysis (Planck Collaboration et al. 2016b), which gives a degree-

scale map of free-free at 30 GHz. In addition, small-scale fluctuations are added to

this map and then rescaled to the desired frequency following a spatially constant

spectral index value of −2.14.

AME simulations: AME model considered is a1, which takes AME as the sum of

two spinning dust populations based on the Commander pipeline (Planck Collabo-

ration et al. 2016b). AME components are characterized by an emission template

at a reference frequency and a peak frequency of the emission law. Both com-

ponents follow a spatially varying emission template given by the SpDust2 code.

However, the first component has a spatially varying peak frequency, while the

second one has a spatially constant peak frequency. Also, small-scale fluctuations

are injected into the emission maps.

Dust simulations: For thermal dust emission, d1 model is followed, which as-

sumes the dust spectra to be a single-component modified black body (mbb).

Planck 545 GHz map is used as dust templates in intensity, which is then scaled

to different frequencies following the mbb spectrum using the (spatially varying)

dust temperature and spectral index, derived from Planck data using Commander



Chapter 6: Statistical Properties of WMAP and Planck Synchrotron Maps 150

algorithm (Planck Collaboration et al. 2016b).

6.3 Analysis pipeline

For meaningful comparison between different observed data sets and also a mean-

ingful comparison of observed data with simulations, we first need to ensure that

the observed and simulated data are produced at the same resolution, have the

same physical units and all processing steps of masking and bandpass filtering

must be identically applied. The observed data considered in this work are given

at different resolutions. We downgrade all the maps (and upgrade WMAP MCMC

maps) to Nside = 128 as the Haslam data is given at this resolution. For consis-

tency, we also convert the maps that are given in units of CMB temperature

(KCMB) to the Rayleigh-Jeans unit (KRJ).

The main data analysis pipeline prior to the calculation of MFs and MTs consists

of bandpass filtering to remove large-scale modes, followed by applying a mask.

These steps are identically applied to all the observed and simulated data. Below

we describe the bandpass filtering and masking processes.

Bandpass filtering: As done in chapter 5, to probe small-scale features of the

field, a bandpass filter is applied in the harmonic space to suppress the large-scale

fluctuations. The filter function we use is

f(ℓ) =
1

4

{
1 + tanh

(
ℓ− ℓc
∆ℓ

)}{
1− tanh

(
ℓ− ℓ∗

∆ℓ

)}
. (6.2)

This filter function contains two cutoff scales. The lower cutoff, ℓc, determines

the scale beyond which larger size (smaller ℓ) fluctuations are filtered out. The

higher cutoff, ℓ∗, is set by the beam size of the Haslam map (56 arcmins). We use

ℓ∗ = 180. We also need to ensure that spurious ringing effects are not introduced
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0 1 0 1

Figure 6.3.1: Maps of the threshold mask (left) and filament mask (right),
after applying a Gaussian smoothing of FWHM = 180 arcmin.

after harmonic transform due to a sharp change of aℓm values at ℓc. A too-small

value of ∆ℓ will introduce ringing, while too large will not provide a reasonable

filter of modes. We choose ∆ℓ = 10 as a reasonable compromise between the above

two factors. Directly applying the filter on foreground maps results in ringing

structures due to the bright Galactic emission. To avoid this, we initially mask

the Galactic region by identifying the pixels where the Haslam map has values

greater than 80 K.

Masking: We mask some parts of the sky to exclude the brightest regions in

the synchrotron sky while retaining the regions where synchrotron signals are

significant and where CMB analysis is carried out.

We use the Haslam map as the reference for deciding high-emission regions. We

also remove point sources identified by Planck. The steps involved in preparing

the mask are as follows.

1. Apply a Galactic cut | b |< 10◦, b being the Galactic latitude.

2. Sort all pixels in increasing order of the values of the Haslam map, and

then mask 25% of the pixels counting down from the highest value. This

corresponds to masking all the pixels in the reference map with values above

35 K.
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3. Lastly, we multiply the above mask by the Planck LFI point sources mask

to remove contamination from extra-galactic point sources.

We refer to this final mask as the threshold mask. It retains 65% of the sky. The

left panel of figure 6.3.1 shows this mask.

For the purpose of testing the robustness of our findings, we use another mask in

our analysis, the so-called filament mask (Vidal et al. 2015). This mask removes

large filamentary structures seen in the Haslam map and WMAP polarization maps

in addition to the masked regions of the threshold mask. It has a sky-fraction of

53%. Figure 6.3.1 (right panel) shows this mask.

To minimise the error due to the sharp mask boundary when performing harmonic

transforms, we apodized the masks with a Gaussian smoothing of 3◦ FWHM. Also,

we estimate the MFs only on pixels where the apodized mask has values greater

than 0.9 so as to avoid any residual contamination from the boundary pixels.

6.4 Results – morphology of observed frequency

maps and comparison with PySM simulated

maps

In this section, we focus on the observed frequency maps outlined in section 6.2.1,

studying their angular power spectra and morphology. We compare them with

PySM simulated maps of the total Galactic foregrounds consisting of synchrotron,

free-free, AME and thermal dust emissions. We then include a discussion of only

synchrotron temperature simulations from PySM.
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Figure 6.4.1: Top left: Cℓs of the observed frequency maps. Top right: Cℓs
of the PySM simulated total foreground maps at the same frequencies as the
left panel. Bottom: Comparison plots of observed frequency (solid lines) and
corresponding PySm total foreground maps (dashed lines) at each frequency
(increasing frequency from left to right). The vertical lines correspond to ℓ =
50, 90.

Out of the observed frequency maps studied here, Haslam and Stockert-Villa

maps are known to be predominantly synchrotron emission, while WMAP and

Planck frequency maps contain CMB, AME, and free-free emissions apart from

synchrotron (Davies et al. 2006; Ghosh et al. 2012). In order to focus only on the

total foreground emission, best-fit CMB maps are subtracted from WMAP and

Planck frequency maps. The CMB maps used are the ones provided by the respec-

tive experiment. We do not subtract the CMB component from the Stockert-Villa

map, as the CMB contribution is expected to be negligible.
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6.4.1 Angular power spectra of observed frequency maps

and PySM simulated total foreground maps

For computing the power spectra, all maps are scaled to Haslam frequency (408

MHz) using the power-law synchrotron spectrum given by eq. (6.1), with a con-

stant spectral index (βs). For Stockert-Villa and the corresponding PySM map,

we use βs = −2.5, while for other maps at higher frequencies, we use βs = −3.0,

accounting for the spectral steepening at higher frequencies. We then calculate

the angular power spectra of the maps after masking, using Namaster. This con-

stant scaling makes the amplitudes of the power spectra comparable. But it will

not affect the morphology, as discussed previously. The plots for the observed

frequency maps are shown in figure 6.4.1 (top left). Also shown are the power

spectra of simulations of the total foreground emissions obtained from PySM at

the same frequencies (top right) as the observed frequency maps. The top left

panel shows that the power spectra at 23, 30 and 33 GHz are distinctly flatter

than those of Haslam and Stockert-Villa from roughly ℓ ∼ 50. Apart from a shift

of the amplitudes, their shapes are similar. Stockert-Villa map shows a similar

shape of the power spectrum as Haslam map till roughly ℓ ∼ 90. On the top right

panels, we observe that the PySM simulated total foreground maps at the three

higher frequencies also exhibit similar flattening behaviour. In contrast, the 1.4

GHz map is quite different from Stockert-Villa. We can observe that the shape of

power spectrum for 1.4 GHz map is similar to the power spectra of PySM maps

at higher frequencies.

In the bottom panels of figure 6.4.1, we compare Cℓ of each observed frequency

map with the corresponding simulated map so as to highlight their similarities or

differences. We see that Stockert-Villa shows considerable differences across all

scales from the simulation, as noted above. At 23 GHz, the power spectra of ob-

served and simulated maps are overlapping, while at 30 and 33 GHz, the observed

maps show higher power towards small scales. We will find this comparison of the
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Figure 6.4.2: Left, ‘Observed Frequency Maps’: MFs versus threshold values,
νt, for each observed frequency map are shown, for different angular scales:
ℓc = 0, 50 and 90. Right, ‘PySM Total Foreground Maps’: Same plots as the
left panel, but for PySM total foreground maps simulated at the frequencies
corresponding to the observed frequency maps.

power spectra between observed and simulated maps useful when we discuss the

morphology of the maps below.

6.4.2 Morphology of observed frequency maps and compar-

ison with PySM simulated total foreground maps

MFs are computed for all the maps after bandpass filtering for different values

of ℓc and then masking. Our goal here is to understand how the morphology of

the total foreground emissions transforms with frequency — from the frequency of

the Haslam map where synchrotron dominates to higher frequencies where AME

and free-free emissions become the dominant components. This exercise can shed
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light on how morphological properties of synchrotron emission can be biased by

contamination by residual AME or free-free emissions.

To estimate the uncertainties of the MFs arising from cosmic variance and instru-

mental noise for each observed frequency map we compute Gaussian simulations

using its angular power spectrum as the input, as described in section 6.2.3.1. To

each simulation, we add an instrumental noise map, prepared based on the steps

outlined in appendix 6.A . We then compute MFs from the resulting maps and

calculate their standard deviation σ at each threshold value. For the Planck map,

we use 300 Full Focal Plane (FFP10) simulations, and thus only 300 Gaussian

simulations are used (Planck Collaboration et al. 2020b). In all plots, we will

show 2σ error bars.

MFs for the frequency maps for ℓc = 0, 50 and 90 are shown on the left panels of

figure 6.4.2 under the heading ‘Observed Frequency Maps’. The case ℓc = 0 corre-

sponds to no bandpass filtering. We find considerable variation with frequency of

all three MFs that can be easily discerned by eye for all ℓc values. For ℓc = 0, there

is a systematic increase of the amplitudes of V1 and V2 as the frequency increases.

Since V2 is a direct count†† of the difference between the number of hot spots

and cold spots (or structures) this amplitude increase indicates that the number

of small scale fluctuations increases as the frequency increases. This increase of

power for ℓ > 50 for higher frequencies is observed in the power spectra shown in

figure 6.4.1. In comparison, the Stockert-Villa map exhibits anomalous behaviour

(or non-conformity with the trend followed by WMAP and Planck maps), which

is most evident from the broad shape of V1. This could be arising from the poorly

understood instrumental effects and calibration uncertainties associated with this

map. We intend to address these issues in the future.

††Strictly speaking, V2 is equal to the Euler characteristic, which is the difference between the
numbers of hot spots and cold spots on flat space. On the sphere, V2 can be equated to the
Euler characteristic to good approximation provided the number of hot/cold spots is high, as is
the case for the fields under consideration here.
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For ℓc = 50 and 90, the amplitudes of both V1 and V2 are larger than those of

ℓc = 0. This is because filtering out large ℓ modes leaves behind only smaller-

scale structures, which become more numerous as ℓc increases. We observe that

the amplitudes become comparable for all the frequencies while the shapes still

exhibit considerable differences. Visually, we can also see that the shapes V1 and V2

for higher frequencies are significantly more non-Gaussian than the Haslam map.

This can be discerned by comparing with the expected shapes for Gaussian fields

given in figure 3.3. This is due to AME and free-free becoming the dominant

components at these frequencies. This is demonstrated in appendix 6.D where

we compare the morphology of AME, synchrotron and AME+synchrotron, and

free-free, synchrotron and free-free +synchrotron using simulations obtained from

PySM.

We mention below two factors that can additionally contribute to the variation

of the morphology of the total foreground with frequency and comment on their

importance.

1. Instrumental noise: The error bars shown in figure 6.4.2 take into account in-

strumental noise as mentioned earlier. In appendix 6.B, we have determined

the contribution of instrumental noise to the frequency maps of WMAP and

Planck. SNR of the maps is found to be much higher than one at all pixels

(see figure 6.B.1). This implies that noise has minimal effects on the variation

of the morphology with frequency. We have also checked this expectation

by repeating all calculations after applying an additional smoothing to all

the maps since smoothing has the effect of decreasing noise, though at the

cost of losing resolution. We find that our results are robust. Hence, we

conclude that the frequency variation of the MFs is not due to white noise.

Further, the contribution of instrumental systematics has been explored in

appendix 6.C, using WMAP and Planck individual year maps. Our analysis

shows that the error bars due to instrumental effects are smaller compared
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to the morphological distinction in these maps. This implies that the sys-

tematics play a minimal role in the observed morphological differences. Note

that we have not checked the instrumental effect for the Stockert-Villa map

since the data that is available is not sufficient to estimate the SNR of the

map and the instrumental uncertainties.

2. Unresolved extra-Galactic point sources: While the point sources mask pro-

vided by Planck is included in the threshold mask that we used in our calcu-

lations, it is possible that unresolved sources contribute to and contaminate

the observed frequency maps. The effect of this on the angular power spec-

tra will be to increase the power at higher multipoles (see also figure 14

and section 4.1 of Remazeilles et al. (2015)). This will lead to an increase

in the number of structures at the corresponding scales, which positively

contribute to V1 and V2. A proper quantification of the contribution and

their distinction from true frequency variation of the total foreground field

will require realistic modelling of the point sources, and we postpone it to a

future investigation.

Next, we focus on simulations of the total Galactic foreground obtained from PySM

at the same frequencies as the observed frequency maps. We then compare (visu-

ally) the morphology between the observed and simulated maps. This comparison

serves the purpose of checking how well the foreground models of PySM reproduce

the observed frequency maps beyond the power spectrum. We produce simulated

maps containing synchrotron, free-free, AME and thermal dust emissions using

PySM. The modelling of these components has been described in section 6.2.3.2.

MFs are computed for these maps after identically masking and bandpass filtering

as done for the frequency maps. The results are shown in the right panels of

figure 6.4.2. The values of ℓc and all the x and y axis ranges are the same as those

for the observed frequency maps for easy comparison. For ℓc = 0, visually, we see
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Figure 6.4.3: Plots of the MFs versus the threshold νt for PySM synchrotron
maps for models s1 (left panels), and s2 (right panels), for ℓc = 0, 50 and 90.
The frequencies of the maps and the scales of all the panels are the same as in
figure 6.4.2.

that the observed frequency maps and simulated PySM maps at each frequency,

except 1.4 GHz corresponding to Stockert-Villa, show good agreement for V0 both

in amplitude and shape. The amplitudes of V1 and V2, however, are much lower

for the simulations for all the frequencies. For smaller scales ℓc = 50 and 90, we

obtain better agreement of the shape and amplitudes of the three MFs with the

corresponding MFs of the observed frequency maps. This indicates that PySM

reproduces observed foreground maps better towards smaller scales compared to

large scales.
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6.4.3 Morphology of PySM simulated synchrotron temper-

ature maps

We now discuss the morphology of PySM simulated synchrotron maps based on

the two models s1 and s2. We generate the maps at the same frequencies as the

observed frequency maps. The morphology of these maps will be determined by

the spatial variation of the synchrotron spectral index. For model s1, βs fluctuates

spatially only mildly. If we denote by σβ
0 and σβ

1 the rms of β and the rms of the

gradient of β, respectively, we obtain the typical angular fluctuation size of β to

be θc = σβ
0 /σ

β
1 ∼ 4◦. Below this scale, MFs will only encode the morphology of

the Gaussian small-scale fluctuations injected in PySM. Model s2 has even less

fluctuations since it varies only along the Galactic latitudes. Therefore, for both

models, we expect only a small variation with frequency.

The results for Vk are shown in figure 6.4.3. All panels follow the same format

as figure 6.4.2. The y-axis ranges for Vk are also the same. As anticipated in

the paragraph above, for all three values of ℓc, we find that the variation with

frequency of Vk for both the synchrotron models are smaller compared to what

we found in figure 6.4.2. When we compare these results with the morphology of

PySM total foreground maps, the large difference can clearly be attributed to the

presence of the other foreground components, namely, free-free and AME, in the

total foreground.

Further comparing models s1 and s2, we find that both models do not differ

much for ℓc = 0. However, towards smaller scales, model s2 demonstrates larger

variation with respect to the Haslam map, and the difference increases as the

frequency increases. This may not be immediately apparent when looking at

figure 6.4.3, but it becomes noticeable in the overall trend of average morphology

shown in figure 6.4.4 of the next subsection.
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Figure 6.4.4: Average MFs, V k defined by eq. (6.3), for observed frequency
maps, PySM simulated total foreground maps, and PySM synchrotron model
s1 and s2, shown as functions of frequency ν.

6.4.4 Comparison of average morphology

To visualize how the average morphology changes as a function of the observing

frequency, we define the average value of each MF, V k, for each map by integrating

over the threshold in the range νt,min to νt,max, as

V k(ν) =

∫ νt,max

νt,min
dνtVk(νt, ν)

νt,max − νt,min

. (6.3)

We choose νt,min = −2 and νt,max = 2 for V1 and V2. For V0, νt,min = 0 and

νt,max = 2. The average MFs are computed for observed frequency maps and the

PySM maps discussed in the previous two subsections. The results are shown

in figure 6.4.4. The error bars shown for the observed frequency maps are 2σ,

where σ is the sum in quadrature of the standard deviations of the MFs at all the
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threshold values considered‡‡. The values of V k are higher for increasing ℓc, as

expected. For all three MFs and for all three values of ℓc, we see good agreement

between observed frequency maps and PySM total foreground maps at 23 and 30

GHz. At 33 GHz, all plots show large disagreement except V 0 at ℓc = 0. The

PySM synchrotron maps for both models exhibit almost no variation in frequency.

Lastly, we stress that the analysis here is focused mainly on synchrotron emission.

A full discussion on the morphology of other foreground signals, their contributions

to the total morphology and the effect of point sources is beyond the scope of this

work and is postponed to future study.

6.5 Results - morphology of component separated

synchrotron temperature and polarization maps

Having probed the morphology of observed frequency maps containing synchrotron,

free-free, AME and thermal dust emissions at different observing frequencies, we

next focus attention on component-separated synchrotron temperature and polar-

ization maps.

6.5.1 Synchrotron temperature maps

Different component separation pipelines used in various CMB experiments utilize

distinct methodologies as outlined in section 6.2.2. In an ideal situation where all

pipelines give the same true synchrotron map, all the maps should exhibit the same

morphology. In reality, the efficiency of separating out the different astrophysical

‡‡We have ignored the correlations of the MFs at different threshold values.
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components differs, and there can be residual contamination from other compo-

nents in the component maps. Comparison of the different component-separated

maps is usually made at the map level by examining the scatter between pixel

values or at the Cℓ level (Planck Collaboration et al. 2016d). Here, we compare

using MFs, going beyond the power spectra to compare the integrated effect of all

orders of N -point correlations.

6.5.1.1 Power Spectra of synchrotron temperature maps

We begin our analysis by discussing the angular power spectra (Cℓ) of the var-

ious component-separated synchrotron maps estimated using NaMaster. Cℓs for

Haslam and Stockert-Villa maps are also included for comparison. Among the

different synchrotron maps, Planck and BeyondPlanck maps are given at a refer-

ence frequency of 408 MHz, while WMAP maps are at 23 GHz. For a meaningful

comparison of different maps at the power spectrum level, we have re-scaled all the

maps to the Haslam frequency, using a constant spectral index value, βs = −3.0

for WMAP and βs = −2.5 for Stockert-Villa maps. As discussed in section 3.3,

this frequency scaling does not alter the overall morphology of the maps under

study.

The power spectra are shown in figure 6.5.1. The top panel shows the full mul-

tipole range of interest, 0 ≤ ℓ ≤ 180. We observe that at low ℓ (large angular

scales), the power spectra of all the synchrotron maps roughly follow a power-law

form with different spectral indices. BeyondPlanck map shows the closest agree-

ment with the Haslam map across all scales. WMAP MCMC-e and Planck also

track the behaviour of the Haslam map down to relatively smaller scales (ℓ ∼ 80)

compared to the other WMAP maps. From this behaviour, we can anticipate

that these three maps will show morphological properties that are relatively closer

to the Haslam map. Note that Cℓ of WMAP MCMC-g (and possibly f) exhibit



Chapter 6: Statistical Properties of WMAP and Planck Synchrotron Maps 164

10 100

10 4

10 2

100

102

C
[K

2 ]

c
=

50

c
=

90

Haslam
Stockert-Villa
WMAP MEM

WMAP MCMC-c
WMAP MCMC-e
WMAP MCMC-f

WMAP MCMC-g
Planck
BeyondPlanck

100

10 4

10 2

C
[K

2 ]

c
=

90

100

Figure 6.5.1: Top: Angular power spectrum, Cℓ, for the full multipole range
0 ≤ ℓ ≤ 180, of different component separated synchrotron temperature maps
given by WMAP and Planck. Cℓ for Haslam and Stockert-Villa maps are also
given for comparison. Bottom left: Same plot as the top but for multipole range
ℓ = 50 to 180. The amplitudes of all maps have been rescaled to match that of
the Haslam map at ℓ = 50 so as to highlight the slope differences. Bottom right:
Same plot for multipole range 90 ≤ ℓ ≤ 180, and amplitudes rescaled to match
that of Haslam map at ℓ = 90.

discernible similarity with Cℓs of WMAP K and Ka with a flattening of power at

ℓ ≳ 50 (compare with figure 6.4.1). The power spectrum of the Stockert-Villa map

is quite different from the others. It exhibits a ‘knee’ with a change of slope and

becomes relatively flat above ℓ ∼ 100.

Figure 6.5.1 (bottom left panel) shows the multipole ranges 50 ≤ ℓ ≤ 180 (left),

where we have rescaled the amplitudes for all maps to match that of Haslam map

at ℓ = 50. This rescaling is done so as to highlight the differences in the shape
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of the power spectra. The y-axis range is the same as the top panel. Towards

larger ℓ (small scales), relative to the Haslam map, we observe varying degrees of

flattening of the power spectra of the different maps (except Stockert-Villa). As

mentioned in section 6.4.2 there can be some contribution of residual point source

contamination to this flattening of power. Next, in the same figure, the bottom

right panel shows the multipole ranges 90 ≤ ℓ ≤ 180 (left), with the amplitudes

for all maps rescaled to match that of the Haslam map at ℓ = 90. Relative to the

Haslam map, we still observe some flattening, though of a lesser degree, for the

power spectra of different maps.

6.5.2 Minkowski functionals for synchrotron temperature

maps

Figure 6.5.2 shows the MFs for all the component-separated maps under consider-

ation. The error bars shown are 2σ, computed from Gaussian simulations to which

instrument noise maps are added (see appendix 6.A). The top row corresponds to

ℓc = 0 and, hence, is a comparison of the morphology of the full maps containing

information on the entire range of scales. It is evident that BeyondPlanck, Planck,

and WMAP MCMC-e maps exhibit good agreement with the Haslam map for all

MFs within 2σ. This correlates with the agreement of their power spectra at most

scales. Since the Haslam map is used as a template for Planck and BeyondPlanck

maps, the agreement is not surprising. The other maps are significantly different

from the Haslam map at different threshold ranges for all three MFs. WMAP

MCMC-c, f, g show good agreement with each other, while WMAP MEM shows

significant differences from them. Stockert-Villa is also significantly different.

Next, we examine the MFs for intermediate to small scales set by ℓc = 50, shown

in the second row of figure 6.5.2. From all three MFs, we find that BeyondPlanck

and WMAP MCMC-e agree with the Haslam map within 2σ. The MFs of these
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Figure 6.5.2: Scalar MFs for various component separated synchrotron maps
for ℓc = 0 (top row), ℓc = 50 (middle row), and ℓc = 90 (bottom row). The
error bars denotes 2σ deviation. For ℓc = 0, we find that BeyondPlanck, Planck,
and WMAP MCMC-e maps exhibit good agreement with the Haslam map for
all MFs within 2σ. For smaller scales, BeyondPlanck and WMAP MCMC-e
has good agreement with Haslam map, unlike Planck and other WMAP maps.
This disagreement could be due to residual point sources or residual foregrounds
contained in these maps.

maps are also closest to Gaussian behaviour, as can be inferred from a comparison

of their shapes with figure 3.3. From V1 we see that the Planck map differs from

Haslam at roughly 2σ, with a marginal increase of non-Gaussianity, while the other

MFs show good agreement. Stockert-Villa also shows similar behaviour as Planck

for V0 and V2. WMAP MCMC-c, f, g again show significant differences from

the Haslam map and exhibit a much higher level of non-Gaussianity. They show

good agreement amongst themselves, though with g differing from c,f at 2σ. The

similarity of the shapes of the MFs for these three maps with those of the composite

fields AME+synchrotron and free-free+synchrotron, shown in appendix 6.D is

noteworthy. Combined with the similarity of the power spectra of these fields with
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those of the total foreground mentioned in the previous subsection, this suggests

that there is contamination by residual AME and/or free-free emissions in these

maps. Interestingly, filtering large-scale modes ℓ < 50 renders the WMAP MEM

map closer to the Haslam map.

The MFs for small scales set by ℓc = 90 are shown in the last row of figure 6.5.2.

From all MFs, we find that BeyondPlanck and WMAP MCMC-e still show good

agreement with the Haslam map. The difference between Planck and Stockert-

Villa is now much more significant compared to when large-scale modes are in-

cluded. WMAP MCMC-c, f, g again show significant differences from the Haslam

map with a high level of non-Gaussianity. The difference between g from c,

and f is much more pronounced. As discussed above for ℓc = 50, this indicates

that these component-separated maps contain residual free-free and/or AME fore-

ground components. WMAP MEM still shows good agreement with the Haslam

map at roughly 2σ.

To summarize, we find significant morphological differences between Haslam, WMAP,

Planck and BeyondPlanck maps. Our analysis suggests that there are two possible

physical causes for these differences. We discuss them below.

1. Unresolved point sources: It has been shown in Andersen et al. (2022) that

BeyondPlanck is contaminated by fewer unresolved point sources compared

to Planck. (See figure 22 of Andersen et al. (2022) which displays differ-

ence maps between the Planck and BeyondPlanck foreground component

maps where the presence of unresolved point sources in Planck maps at high

latitudes are clearly visible). From this, combined with the flattening of

the power spectrum of the Planck map towards small scales relative to the

Haslam map, we deduce that the presence of point sources is responsible

(at least partly) for the difference in the MFs between Planck and Haslam

at small scales. Since we use the same point sources mask for the WMAP
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maps, there must also be some contribution of residual point sources to their

morphology. The similarity of MCMC-e to Haslam is interesting because it

is the one that assumes a spatially constant power-law form for the inten-

sity in the synchrotron modelling. Other MCMC methods keep the spectral

index as a free parameter. Given that the point sources also follow a power-

law spectra (albeit with a steeper index), MCMC maps, except e, are more

susceptible to erroneously identifying point sources as synchrotron signals.

2. Contamination by residual AME and/or free-free emissions: A major im-

provement in the Planck component separation methods over WMAP is

the better estimation of AME through the improved model for AME spec-

tra Planck Collaboration et al. (2016d). So, the morphological similarity

amongst the MCMC-c, f, and g maps and the difference from Haslam,

Planck, and BeyondPlanck indicate that the residual AME component con-

tributes to the overall morphology of these MCMC maps. However, our

analysis does not distinguish contamination by residual AME from free-free;

there can also be contributions from free-free (see the shapes of the MFs in

appendix 6.D).

6.5.2.1 Nature of non-Gaussianity of component separated synchrotron

maps

MFs are powerful tools for detecting the presence of non-Gaussianity whose nature

is a priori unknown. In our previous chapter, we showed that towards smaller

scales, the Haslam map is kurtosis-dominated, and skewness is relatively small.

This cannot be efficiently detected by the bispectrum but will show up in the

trispectrum. Here, we carry out the same analysis to quantify the level and type

of non-Gaussianity for the component-separated synchrotron maps. In order to

distinguish different kinds of non-Gaussianity, it is useful to probe the individual
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Figure 6.5.3: Non-Gaussian deviations ∆Vk/V
G,max
k for component separated

synchrotron temperature maps. Error bars denote 2-σ deviation from the mean
values. The shapes are characteristic of kurtosis-type non-Gaussianity, indicat-
ing that the nature of the non-Gaussianity of the fluctuations in the Planck,
Stockert-Villa and WMAP synchrotron maps are also of kurtosis-type.

generalized skewness and kurtosis moments (see section 5.3.2). Here, we will not

show the individual moments but will focus on their consolidated effect.

To quantify the non-Gaussian deviation of a given field, we use:

∆Vk = Vk − V G
k , (6.4)

where the superscript G refers to the Gaussian expectation. For each component-

separated map that we study, we need to calculate V G
k . This is obtained from

Gaussian simulations (section 6.2.3.1) to which instrument noise maps are added.

Then, we subtract V G
k from Vk to obtain the non-Gaussian deviation ∆Vk. For

ℓc = 0, the fields have ∆Vk/V
G
k > 1, and hence, it is not meaningful to discuss

mild deviations from Gaussian nature in terms of perturbative expansions. There-

fore, we focus on smaller scales. Figure 6.5.3 shows ∆Vk/V
G
k versus νt for all the

component separated maps, for ℓc = 50 and 90. The error bars are 2σ. We make

the following observations.
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Shape of deviations and nature of non-Gaussianity: The non-Gaussian deviation

shapes for all the maps are roughly similar to that of the Haslam map. The

shapes are characteristic of kurtosis-type non-Gaussianity (Rahman et al. 2021;

Matsubara 2010), with the relative differences depending on which of the gen-

eralized kurtosis variables are dominant. Thus, we conclude that the nature of

the non-Gaussianity of the fluctuations in the Planck, Stockert-Villa and WMAP

synchrotron maps are also of kurtosis-type.

Level of non-Gaussian deviations: For both values of ℓc, we find that Beyond-

Planck and WMAP MCMC-e have comparable levels of non-Gaussianity with

Haslam, while the other maps show higher levels. The level of non-Gaussianity for

Planck, WMAP, MCMC-c, f, g and MEM, and Stockert-Villa maps do not show

a decrease towards smaller scales (an increase of ℓc). This can be explained by

point source contamination for Planck as well as WMAP maps, as discussed in

the previous subsection. In addition, the WMAP maps contain the effect of resid-

ual contamination by other foregrounds, particularly AME (Planck Collaboration

et al. 2016d). A summary of the significance of the non-Gaussian deviations is

given along with the results for polarization in table 6.5.1 in section 6.5.4.

6.5.2.2 Statistical isotropy

To probe the SI of the component-separated synchrotron temperature maps, we

use the α statistic defined in eq. (3.27). We compute α for all the maps for different

bandpass filter scales. We also compute α for the 1000 Gaussian simulations plus

noise corresponding to each map. The results for α are shown in figure 6.5.4

for ℓc = 50 and ℓc = 90. Each panel corresponds to one map for each ℓc. The

coloured diamonds show α versus νt for each map. Since α follows Beta probability

distribution, we compare α of each map with the median α for the corresponding
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Figure 6.5.4: SI parameter α versus νt, for component separated synchrotron
maps. The shaded regions show the 95% confidence interval about the median
values at each threshold obtained from 1000 Gaussian simulations. Beyond-
Planck and WMAP MEM maps are relatively more isotropic compared to other
synchrotron maps.

1000 Gaussian maps. The shaded regions correspond to the 95% confidence levels

(CL) about the median values.

Note that values of α less than the 95% CL lower limit are the ones with significant

anisotropy. We find that BeyondPlanck and WMAP MEM are comparatively the

most isotropic for both ℓc values, with almost all α lying within 95% CL. Planck

map shows anisotropy at a few thresholds, and there are more anisotropic threshold

values for ℓc = 90 compared to 50. This correlates with the higher level of non-

Gaussianity towards smaller scales seen earlier and is likely due to residual point

sources in the map. WMAP MCMC c, f, g maps also exhibit anisotropy at several

threshold values, and it is visually clear that WMAP MCMC-g shows the highest

level of anisotropy at both scales. Again, this correlates with what we found for
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Figure 6.5.5: Non-Gaussian deviations (∆Vk/V
G,max
k ) for component sepa-

rated E and B mode synchrotron polarization maps from WMAP and Planck.
Error bars are 2-σ around the mean values. The shape of ∆Vk indicates that the
non-Gaussianity of synchrotron polarization maps are also of kurtosis origin.

the level of non-Gaussianity in the previous subsection. We find that WMAP

MCMC-e also shows significant anisotropy at several threshold values for both

bandpass filter scales. Since this map shows a low level of non-Gaussianity, the

significant anisotropy is not in alignment with the other maps for which we find

higher anisotropy for higher non-Gaussianity.
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6.5.3 Morphology of synchrotron polarization

Next, we discuss the morphology of component-separated synchrotron polarization

maps provided by WMAP and Planck. We focus on bandpass filter scales ℓc = 30

and ℓc = 50 since instrumental noise dominates in the maps towards smaller scales.

We use the Planck polarization maps derived using the Commander component

separation method. For WMAP, we use the polarization maps derived using the

MCMC technique (MCMC-g). MFs are calculated for E and B mode maps, which

are obtained using NaMaster. We also compute MFs for 1000 Gaussian simulations

generated using the power spectrum of each map after adding instrumental noise

realizations (see appendix 6.A).

Figure 6.5.5 shows the non-Gaussian deviations of the MFs for E and B mode

maps of WMAP and Planck. The shape of the deviations for both E and B

mode maps shows excellent agreement with what was obtained for the Haslam

(temperature) map (compare with figure 6.5.3). This finding confirms that the

Galactic synchrotron exhibits kurtosis non-Gaussianity both in temperature and

polarization, with the skewness contribution being sub-dominant. As was found

for the Haslam map, we find that ∆V0 provides more stringent confirmation of the

nature of non-Gaussianity than ∆V1 and ∆V2.

6.5.4 Statistical significance of non-Gaussian deviations

To estimate the significance of non-Gaussian deviations, we calculate χ2 defined

as,

χ2
uc =

1

Ntot

2∑
k=0

3∑
νt=−3

(
V data
k (νt)− V

G

k (νt)
)2

σ2
V G
k
(νt)

(6.5)
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V data
k is the MF estimated for different synchrotron maps, V

G

k (νt) is the mean

of the respective Gaussian simulations, and σ2
V G
k
(νt) the standard deviation. The

threshold bin width is 0.4. The total number of statistics is Ntot = 16 × 3 =

48. The subscript uc (uncorrelated) indicates that the correlations between the

threshold values and among different MFs are not taken into account here. Note

that we choose a larger bin size to minimize the bias resulting from neglecting

these correlations.

Table 6.5.1 shows the square root of χ2
uc values for different component-separated

synchrotron temperature and polarization maps. For temperature maps, we find

that the values are quite large, indicating that the maps are highly non-Gaussian,

even at the relatively smaller scales considered here. Compared to the Haslam

map, all maps except WMAP MCMC-e and BeyondPlanck have higher levels

of non-Gaussianity that increase as ℓc increases. WMAP MCMC-e also shows

a slight increment as we go to small scales, unlike BeyondPlanck. This again

signifies the better treatment of point sources in the BeyondPlanck analysis. As

discussed in section 6.5.2 and also in appendix 6.D, our analysis strongly suggests

that this is due to residual contamination by other Galactic components, with

some contribution from unresolved point sources. It should be noted that the χ2
uc

values given in the previous chapter were estimated for a sky fraction of 40%. The

current analysis, however, is carried out on 65% of the sky to retain the sky regions

with a high SNR. Hence, they cannot be compared directly.

For polarization, the χ2
uc values are smaller than the values for temperature. All

the maps show a decrease of χ2
uc towards smaller angular scales. We find that

the main contribution to the χ2
uc is coming from V0 for all the temperature and

polarization maps. This is evident from figures 6.5.3 and 6.5.5, where V0 has

error bars smaller than that of V1 and V2. This was also observed in our previous

analysis of the Haslam map. In the case of polarization, the χ2
uc values are lower

due to the increased level of noise present in these maps.
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Figure 6.5.6: Correlation coefficient, ρij = Cij/
√
CiiCjj estimated using 1000

simulations corresponding to Haslam map.

In Table 6.5.2, the square root of the χ2 values, considering correlations (also, after

dividing with the number of statistics; reduced χ2) is shown. Here, χ2 is defined

as,

χ2 =
n∑

i=1

n∑
j=1

[Xdata
i −X

G

i ]C
−1
ij [Xdata

j −X
G

j ], (6.6)

where X is the vector, X ≡ {V0(νt), V1(νt), V2(νt)} for the threshold values νt ∈
[−3, 3] with bin size ∆νt = 0.2. Cij is the correlation matrix given by,

Cij = ⟨[Xsim
i −X

G

i ][X
sim
j −X

G

j ]⟩. (6.7)

⟨⟩ denotes the average over 1000 Gaussian simulations with noise maps, specific to

each data set, added to them. The vector X contains 31× 3 = 93 statistics. It is

seen that except for Haslam, WMAP MCMC-e and BeyondPlanck, incorporating

correlations leads to larger χ2 values. For polarization, including the effect of cor-

relations lowers the χ2 values. Nevertheless, our results and the inferences drawn

from them remain consistent even after accounting for correlations. Figure 6.5.6
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Temperature

ℓc Haslam Stockert

- Villa

WMAP

MEM

WMAP

MCMC-c

WMAP

MCMC-e

WMAP

MCMC-f

WMAP

MCMC-g

Planck Beyond

Planck

50 9.54 19.49 16.18 42.19 7.15 42.20 50.60 19.83 9.75

90 7.33 29.25 17.93 46.01 8.66 46.25 63.23 29.95 9.19

Polarization

ℓc — WMAP E-mode WMAP B-mode Planck E-mode Planck B-mode

30 — 3.65 3.10 2.48 1.94

50 — 2.81 3.26 2.71 2.18

Table 6.5.1: The square root of χ2
uc, quantifying the non-Gaussian deviations of

different component-separated synchrotron temperature and polarization maps.
Here, the correlations between different thresholds and among different MFs are
not considered.

shows the correlation coefficient for X, defined as ρij = Cij/
√
CiiCjj obtained for

the simulations corresponding to Haslam map.

We have repeated the analysis with the filament mask (right panel of figure 6.3.1)

for both temperature and polarization maps and found no significant difference

from the results discussed above. This suggests that large-scale filamentary struc-

tures in the synchrotron sky do not affect our results.

6.6 Summary and discussion

In this chapter, our primary goal is to understand the nature of non-Gaussian

deviations of Galactic synchrotron emissions on different length scales. For this
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Temperature

ℓc Haslam Stockert

- Villa

WMAP

MEM

WMAP

MCMC-c

WMAP

MCMC-e

WMAP

MCMC-f

WMAP

MCMC-g

Planck Beyond

Planck

50 6.28 28.28 19.12 72.51 4.85 69.79 98.70 33.56 8.22

90 5.39 52.13 22.00 70.87 7.01 65.16 121.85 58.94 8.27

Polarization

ℓc — WMAP E-mode WMAP B-mode Planck E-mode Planck B-mode

30 — 2.14 1.85 1.76 1.42

50 — 1.73 1.95 1.73 1.42

Table 6.5.2: The square root of χ2, by taking into account the correlations
among different threshold values and between three MFs. We find that for
temperature maps, except for Haslam, WMAP MEM and BeyondPlanck, the
χ2 values are quite large. For polarization maps, the values are lower due to the
increased level of noise present in those maps.

purpose, we analysed the morphological properties of two sets of Galactic fore-

ground maps.

The first set of maps we analyse is comprised of observed Galactic total emissions

at different frequencies ranging from 408 MHz to 33 GHz. This analysis reveals

how the morphology of the total Galactic foreground transforms as synchrotron

emission, which is the main component towards lower frequencies, becomes the

sub-dominant component at 23 GHz and higher frequencies. From the results

of this study, we can anticipate the impact of residual contamination by other

foreground components on the morphology of component-separated synchrotron

maps. Since the observed frequency maps have high SNR, it is unlikely that our

results are biased by instrumental noise. Furthermore, we have demonstrated that

the results we have obtained remain unaffected by the instrumental systematics
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inherent in these maps. We then compare them with the morphology of simulated

total foreground emission maps obtained from PySM. This comparison reveals

significant amplitude and shape differences of the MFs between the observed maps

and the simulations on large scales and relatively better agreement towards smaller

scales.

The second set of maps we analyse are component-separated synchrotron tem-

perature maps from WMAP, Planck and BeyondPlanck, and polarization maps

from WMAP and Planck. From all the maps studied, both temperature and po-

larization, we conclude that the nature of non-Gaussian deviation of small-scale

fluctuations of synchrotron emission is of kurtosis type. This is in agreement with

our earlier finding from the Haslam map in the previous chapter. We have in-

cluded instrumental noise in estimating the uncertainties. Also, we have taken

into account the role of instrumental systematics in our results, and it has been

found to be minimal. This result is important from two perspectives. First, it

provides a concrete direction for modelling small-scale fluctuations of synchrotron

emission as mildly non-Gaussian fields of kurtosis nature rather than Gaussian.

The isotropic nature of the BeyondPlanck map, in agreement with the Haslam

map, also implies that the modelling of small-scale fluctuations of synchrotron as

a statistically isotropic field is in the right direction. These findings can, there-

fore, improve component separation pipelines, which is particularly important for

B-mode experiments. In fact, Martire et al. (2023) have recently developed a

methodology for including the kurtosis nature in generating non-Gaussian syn-

chrotron models. Secondly, this result implies that contamination of the true

CMB by residual synchrotron component will most likely result in kurtosis-type

non-Gaussianity. Hence, it will not be detectable by 3-point statistics such as the

bispectrum. Preliminary work to determine the type of non-Gaussianity induced

by residual foregrounds in WMAP data using MFs was carried out in Chingang-

bam & Park (2013). It is timely to revisit such analysis in light of our current

results.
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Lastly, we comment on the comparison of the morphology of different component-

separated synchrotron temperature maps. This comparison serves to analyse the

performance of various pipelines that are adopted for WMAP and Planck data,

beyond the usual zeroth order comparison at the map and power spectrum level.

Accurate component separation by each independent method must lead to the

same morphology, that is, a similar level of non-Gaussianity and SI. Using the

Haslam map as the benchmark, we find that BeyondPlanck and WMAP MCMC-

e are the best-performing pipelines. The other maps show differences that are

significant. In particular, the Planck map shows a significant difference towards

small scales, which is likely to be due to the presence of unresolved point sources.

The other WMAP maps show even larger differences at different scales. This is

likely to be due to unresolved point sources and contamination by residual AME

and/or free-free emissions. It is important to acknowledge that the contribution of

WMAP and Planck systematics in the observed morphological distinctions is not

ruled out; however, quantifying their impact is beyond the scope of this study. A

systematic investigation of the various contributions from residual contamination

and point sources in the future will be very valuable.

Our results underscore the need for further improvement of the component sep-

aration techniques. It will be interesting to extend our analysis to other low-

frequency surveys like S-PASS (at 2.3 GHz) (Carretti et al. 2019), C-BASS (at 5

GHz) (Harper et al. 2022), and the QUIJOTE-MFI (from 11 to 19 GHz) (Rubino-

Martin et al. 2023). We would like to explore the morphological properties of other

Galactic components and plan to carry out these extensions in the near future.

It is also important to provide a physical explanation for the kurtosis nature of

Galactic synchrotron emissions.



Appendix

6.A Estimation of instrumental noise

The uncertainties of the MFs for the observed frequency maps and the component-

separated synchrotron maps shown in the paper include instrumental noise. For

estimating the uncertainties, we need noise maps for each experimental setup. For

the Planck LFI 30 GHz frequency map, we do not produce noise simulations our-

selves. We use 300 FFP10 noise simulations provided by Planck (Planck Collab-

oration et al. 2020b). For the other observed frequency and component-separated

maps, the instrumental noise properties differ from map to map. We generate

them using noise characteristics provided by the experiment. We describe them

case by case below.

• For Haslam and Stockert-Villa maps, we are provided with the noise rms

values of the instruments. These are 800 mK (Remazeilles et al. 2015) and

17 mK (Testori et al. 2001), respectively. For each observed map, we generate

1000 noise maps, each of which is Gaussian random numbers at each pixel

with the respective rms values as the standard deviation.
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• To generate the noise maps for WMAP K and Ka frequency maps, we use

the following equation

σ2(n̂) = σ2
0/Nobs(n̂), (6.8)

where n̂ is the sky direction, σ0 and Nobs are, respectively, the noise rms and

the number of observations taken at every pixel for each frequency band.

For K band, σ0 = 1.429mK, and for Ka band it is 1.466mK (Bennett et al.

2013). We use Nobs for K and Ka bands provided by WMAP. Then, we

generate Gaussian random numbers at each pixel with σ(n̂) as the standard

deviation. We generate 1000 such noise maps.

• The component-separated WMAP MCMC, Planck, and BeyondPlanck data

sets include the synchrotron posterior rms maps. We use these map values

as the standard deviation for generating 1000 Gaussian random numbers at

every pixel.

• For WMAP MEM synchrotron map, noise rms maps are not provided. So, we

identify the most noisy frequency channel, which is W2, to generate the noise

maps. This makes our error estimates conservative. We use σ0 = 6.94mK

(Bennett et al. 2013) and Nobs map provided by WMAP. We then generate

the noise map using eq. (6.8).

We use this map as the rms map for generating 1000 Gaussian random

numbers at each pixel.

• For WMAP MCMC polarization maps, the Q,U posterior rms maps are

provided. These map values serve as the standard deviation for generating

noise realizations, similar to what is followed for temperature maps.

• For Planck Commander polarization maps, we consider the difference between

two half-mission maps as the noise realization.
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6.B SNR of WMAP and Planck frequency maps

In this section, we estimate the SNR of the Planck LFI 30 GHz map, WMAP K

band and Ka band maps. The left panel of figure 6.B.1 shows WMAP K and Ka

and Planck LFI 30 frequency maps after subtracting the best fit CMB maps from

WMAP and Planck, respectively. The middle panel shows the maps containing

instrumental noise from the respective maps in the left panel. These noise maps

are obtained as explained below:

• For Planck, the noise map is generated by subtracting the two half-ring maps.

Half-ring maps are the maps prepared using only the first or second halves

of each ring (pointing period) of the telescope, so the sky signal is expected

to be the same, but the noise will differ. By subtracting these maps, we can

isolate the noise content.

• For WMAP K and Ka bands, we average the observed maps of the first four

individual years and similarly average for the next four years. Then, we

subtract the two resulting maps to estimate the noise.

We then obtain the SNR map, which is the signal map (shown in the left panel)

divided by the standard deviation of the respective noise map (shown in the middle

panel). This map is shown in the third column of figure 6.B.1. We find that the

SNR maps of both WMAP and Planck have high values across all the pixels.

6.C Effect of instrumental systematics

Instrumental effects can introduce alterations to the morphology of the maps we

have been studying, potentially affecting our overall analysis and interpretation.



Chapter 6: Statistical Properties of WMAP and Planck Synchrotron Maps 183

mKCMB

WMAP K

0 127.44 mKCMB-10.73 -9.73 0.01 13198.1

mKCMB

WMAP Ka

0 56.72 mKCMB3.306 3.812 0 10341.9

mKCMB

Planck 30

0 78.1 mKCMB-0.029 0.018 0 26426.4

Figure 6.B.1: Left column: Maps of WMAP K band (top), Ka band (middle)
and Planck LFI 30 GHz (bottom), after subtracting the best-fit CMB map given
by the respective experiments. Middle column: Maps showing the instrumental
noise in the corresponding map on the left. Right column: Maps of the SNR for
the same.

This section explores the possible role of instrumental systematics in the morpho-

logical distinctions we have observed in the maps we studied. Our focus lies on

WMAP and Planck products, as examining the instrumental effects of Stockert-

Villa requires a comprehensive understanding of the instrument and calibration

techniques. We reserve this topic for a future study.

To quantify this, we focus on the observed frequency maps of WMAP (K and Ka)

and Planck (30 GHz), which largely contribute to the derived synchrotron products

of the respective missions. We use the individual year maps at each frequency (9

years for WMAP and 4 years for Planck) and study how the morphology varies

at each year. Under the assumption that the signal remains consistent across

each year, while the noise and instrumental effects vary with time, we obtain an
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Figure 6.C.1: Top: Mean and 2σ error bars of MFs for WMAP and Planck
individual year frequency maps at small angular scales. We find that the mean
MFs for each frequency map fall beyond the 2σ error bars of other maps. This
indicates that the systematics has a negligible effect on the observed morpho-
logical distinctions of the frequency maps.

estimate of how significant the noise and systematics are, in each frequency band.

We calculate the three scalar MFs for these maps at different angular scales (ℓc = 0,

ℓc = 50 and ℓc = 90). The results of the mean MFs and 2σ error bars are shown

in Figure 6.C.1. The error bars represent the preliminary assessment of both the

systematics and noise present in each map.

We find that the mean MFs for each frequency map fall beyond the 2σ error bars

of other maps. This indicates that the systematics has a negligible effect on the

observed morphological distinctions of the frequency maps. To put it differently,

the morphological differences we are observing are significantly larger than the
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KRJ

AME

0 0.01357 KRJ

Synchrotron

2e-05 0.00643 KRJ

Free-free

0 0.16165

KRJ

Synchrotron+AME

3e-05 0.01574 KRJ

Synchrotron+Free-free

3e-05 0.16355

Figure 6.D.1: Top: Maps of AME (left), synchrotron (middle) and free-free
(right) emissions at 23 GHz generated using PySM. Bottom: Maps of the sums
of synchrotron and AME (left), and synchrotron and free-free (right).

systematic uncertainties. This trend is seen for all the three MFs at all the scales

we studied. Consequently, the synchrotron products derived using these maps

remain unaffected by the instrumental effects. Therefore, our analysis implies

that the morphological distinctions we observe for different synchrotron maps at

both small and large scales are not biased by the instrumental systematics.

6.D Morphology of composite foreground fields

Here, we want to probe how the MFs of the sum of two foreground components

differ from the MFs of the individual components. For this purpose, we generate

maps of synchrotron, AME and free-free emissions at 23 GHz using PySM. The

maps and their sums are shown in figure 6.D.1. Note that the ranges of the

field values shown differ from map to map. At 23 GHz, free-free is the most

dominant, followed by AME and synchrotron. Visually, we can also see that
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Figure 6.D.2: MFs for the synchrotron, AME and their sum for different
angular scales. We find that V1 and V2 for AME have higher amplitudes than
synchrotron due to the smooth nature of synchrotron fluctuations. In the sum
field, the behaviour is primarily determined by AME as it is the dominant field
at 23 GHz relative to synchrotron.

synchrotron fluctuations are considerably smoother (implies less power on smaller

scales) compared to AME and free-free.

For each of the five maps, we compute MFs after bandpass filtering and masking

identically. The results are shown in figure 6.D.2 and 6.D.3. Figure 6.D.2 compares

the MFs of AME, synchrotron and their sum in each panel, with the rows from

top to bottom corresponding to ℓc = 0, 50 and 90. For ℓc = 0, we can clearly

see that V1 and V2 for AME have higher amplitudes compared to synchrotron.

This can be understood by comparing their typical size of structures quantified by

θc = σ0/σ1. The amplitudes of V1 and V2 are set by θ−1
c and θ−2

c , respectively, at

the zeroth order Gaussian approximation of any given field. Synchrotron has larger
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Figure 6.D.3: MFs for the synchrotron, free-free and their sum for different
angular scales. Free-free has more amplitude owing to their size of structures
smaller than synchrotron. Moreover, the sum field features are mostly deter-
mined by free-free as synchrotron is subdominant at 23 GHz.

θc compared to AME due to its relatively smoother nature, and as a consequence,

we can expect, and we find, lower amplitudes for V1 and V2. For ℓc = 50 and 90,

we find that the MFs of the sum of the two fields are determined primarily by

that of AME (overlapping red and green plots). This is due to AME being the

dominant field at 23 GHz as well as the relative smoothness of the synchrotron.

Figure 6.D.3 compares the MFs of free-free, synchrotron and their sum, similar to

the comparison with AME. Again, synchrotron is much smoother than free-free.

We again obtain the MFs of the sum of the two fields to be roughly average of the

MFs of the individual fields for ℓc = 0, while for ℓc = 50 and 90, the morphology

of the sum is primarily determined by free-free.
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It is straightforward to extend the above comparison to the sum of the three fields.

For the frequency used here, 23 GHz, the morphology of the sum will be deter-

mined mainly by free-free since it is the dominant component. We stress that the

results will vary with observing frequency as different component fields dominate

at different frequencies. We have not considered thermal dust emission here since

it remains sub-dominant at the frequencies considered in our paper. A point that

is interesting to note is that AME and free-free emissions are relatively more non-

Gaussian than synchrotron at ℓc = 90, as can be discerned from the shapes of V1

and V2 and comparison with figure 3.3. This shows that in constructing models for

these fields, the ‘small’ scale beyond which they can be assumed to be Gaussian, if

they approach Gaussian behaviour at all, will be smaller than that of synchrotron.

We also note that the use of these findings to interpret the results in section 6.4.2

is based on the assumption that the models of the emissions input in PySM are

accurate. If PySM is inaccurate, there will be some variation in the morphology.

However, the inferences for composite fields will broadly remain valid.





Chapter 7

Statistical Properties of Foreground

Components – Free-free, AME and

Thermal Dust Emissions∗

7.1 Introduction

In the previous chapters, we have studied the statistical properties of Galactic

synchrotron radiation. This study is valuable for CMB and Epoch of Reionization

(EoR) experiments. Now, we focus our attention on the other Galactic foregrounds

like AME, free-free and thermal dust emissions. The physical origin of these emis-

sions is discussed in detail in Chapter 2. These three are the major components

in the frequency ranges that are targeted for CMB. However, AME and thermal

dust emission are not important for EoR observations.

∗This chapter is based on the papers that are under preparation.
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As CMB experiments become increasingly sensitive at arcminute and arcsecond

angular scales, the availability of high-resolution foreground models becomes im-

portant in enhancing the accuracy of component separation pipelines. Although

the common practice in small-scale foreground modelling is to inject Gaussian re-

alizations (Delabrouille et al. 2013; Remazeilles et al. 2015; Thorne et al. 2017),

there are several recent endeavours to acquire high-resolution estimates of thermal

dust and synchrotron maps (Krachmalnicoff & Puglisi 2021; Hervias-Caimapo &

Huffenberger 2022; Irfan 2023). In this pursuit, unravelling the nature and level

of non-Gaussianity at small angular scales of all the Galactic components plays

a crucial role in preparing accurate foreground models. Morphological tools are

instrumental in achieving this goal.

The kurtosis nature of synchrotron non-Gaussianity at small angular scales is

an intriguing feature that can provide important insights into the astrophysics

of synchrotron emission as well as foreground modelling for CMB experiments.

This observation naturally leads to the question of investigating the non-Gaussian

features exhibited by other major Galactic emissions at small scales. This chap-

ter looks deeper into this aspect, exploring the properties of free-free, AME and

thermal dust emissions.

Kurtosis non-Gaussianity can potentially originate from the underlying log-normal

probability distribution of the synchrotron field. If this holds true, then all fields

that exhibit the log-normal distribution can be expected to display kurtosis non-

Gaussianity. Taking a more generalized perspective, it is possible that all ran-

dom fields following positively skewed distributions showcase kurtosis behaviour

at small scales. Note that Galactic emissions are interstellar radiation fields with

positively skewed distributions (see the histograms of different Galactic foreground

maps shown in figure 7.3.1). If this is indeed the case, kurtosis nature becomes a

universal behaviour for positively skewed distributions. We begin this chapter by

investigating this point. We apply the Minkowski functional (MF) formalism on
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three toy models of random fields characterized by positively skewed distributions,

namely chi-squared, log-normal, and Rayleigh fields. We examine their statistics

at different angular scales. Then, we investigate the statistical properties of AME,

free-free and dust maps given by Planck and quantify the level and nature of

non-Gaussianity present in these fields.

This chapter is structured as follows. Section 7.2 examines the non-Gaussian

characteristics of toy models, studying random fields with different probability

distributions. In section 7.3, we analyse non-Gaussian deviations of major Galactic

foregrounds, such as AME, free-free, and thermal dust emissions. By studying

temperature maps at various angular scales, we observe the behaviour of non-

Gaussian features with scale. Section 7.4 presents a summary of our key findings

and discussions.

7.2 Non-Gaussianity of positively skewed random

fields - toy examples

We start our analysis by exploring the small-scale statistics of a few toy examples

— random fields following different probability distributions, namely chi-squared,

log-normal and Rayleigh distributions. We briefly discuss these distributions below

and recommend Johnson et al. (1994) for more details.

Chi-squared distributed field: In statistics and probability theory, the sum

of squares of k-independent normal random variables follows the chi-squared dis-

tribution. This distribution is parameterized by k, which specifies the number of

degrees of freedom. The probability density function (PDF) is given as,

P(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2. (7.1)
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The chi-squared distribution is a positively skewed distribution, with the extent

of skewness determined by the value of k. It is extensively utilized in statistics for

hypothesis testing, goodness-of-fit analysis, and constructing confidence intervals.

Its wide-ranging applications make it a fundamental tool for drawing inferences

and making statistical inferences in various fields of study. Figure 7.2.1 (top-left

panel) shows the density function P(x) for different values of k.

For our calculations, we have generated a chi-squared distributed random field

by summing the square of six independent Gaussian random fields (k = 6),

which are mean-free and have standard deviation unity. Figure 7.2.1 (middle-

left panel) shows the chi-square distributed map along with the histogram of the

map (bottom-left panel).

Log-normal distributed field: A random variable whose logarithm is Gaussian

distributed has a log-normal probability distribution. In other words, if the vari-

able x is log-normal distributed, then z = ln (x) follows a Gaussian distribution.

The PDF for a log-normal variable x is,

P(x) =
1

xσ0

√
2π

exp

(
− (lnx− µ)2

2σ2
0

)
. (7.2)

For any Gaussian random variable z, x = eµ+σ0z is a positive variable which is

log-normal distributed, with two parameters µ and σ0. For the purpose of our

analysis, we have obtained a log-normal random field by taking the logarithm of

a Gaussian field, with µ = 0 and σ0 = 0.3. In figure 7.2.1, the top panel of the

second column illustrates the PDF of the log-normal distribution corresponding to

different σ0 values. The second column also includes the log-normal map prepared

(middle panel) along with the histogram of the map (bottom panel).

Rayleigh distributed field: When two independent Gaussian random variables,

u and v, with mean zero and variance σ2
0, are combined as the square root of
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Figure 7.2.1: Top: PDF of the chi-squared (left), log-normal (middle) and
Rayleigh (right) distributions for different values of their respective parameters.
The value of µ is kept as zero for log-normal distribution. Middle: Maps following
chi-squared, log-normal and Rayleigh distribution. Bottom: The normalized
histogram of the field values of the maps shown in the middle panel.

their sum of squares (x =
√
u2 + v2), the resulting x variable follows a Rayleigh

distribution. PDF for a Rayleigh distribution is given by,

P(x) =
x

σ2
0

e−x2/2σ2
0 . (7.3)

Rayleigh-distributed random field is prepared by taking the square root of the sum

of squares of two Gaussian fields with mean zero and unit variance. Figure 7.2.1

(top-right panel) shows the shape of Rayleigh distribution for different σ0 values.

Also, the middle- and bottom-right panels show the Rayleigh map generated (with
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σ0 = 1) and the histogram of the map, respectively.

Next, we examine how the non-Gaussian features of these random fields, with

varying PDFs, behave at small angular scales. The three maps are prepared at a

resolution of Nside = 128 after applying a Gaussian beam of FWHM = 60 arcmin.

To isolate small-scale fluctuations and remove large-scale modes, we apply the

same tanh bandpass filter used in the chapters 5 and 6, as defined in eq. (6.2).

For the uppercut, ℓ∗, we select a value of 180, corresponding to the scale of the

applied Gaussian beam. Also, ∆ℓ is taken as 10. For the three toy maps, scalar

MFs are calculated for four different values of ℓc: 20, 50, 90, and 140.

Since our main interest is to quantify non-Gaussianity, we calculate the deviation

of MFs for these maps from their corresponding Gaussian maps. For this purpose,

we generate Gaussian isotropic simulations using the angular power spectrum† of

these maps. Also, we define non-Gaussian deviation as,

∆Vk = Vk − V G
k , (7.4)

where the superscript G refers to the Gaussian maps. Figure 7.2.2 shows ∆Vk

normalized with the amplitude of V G
k for all three maps at different angular scales.

These results are obtained by averaging over 1000 Gaussian isotropic maps.

We find that as we go to smaller angular scales, irrespective of the probability

distribution, all the maps exhibit decreasing levels of non-Gaussianity. This is

evident from all the three ∆Vks. ∆Vk of chi-squared and log-normal maps exhibit

characteristic shape similar to that of kurtosis type gNL non-Gaussianity, which

was seen for Haslam and other synchrotron maps before. However, for Rayleigh

maps, the shape of ∆Vk is different, resembling the shape of non-Gaussianity where

skewness dominates (see figure 3.4 for comparison).

†Power spectrum is computed using the anafast subroutine of healpy package.
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Figure 7.2.2: Non-Gaussian deviation (∆Vk) for random fields with arbitrary
PDFs at different angular scales. We find that as we go to smaller angular scales,
irrespective of the probability distribution, all the maps exhibit decreasing levels
of non-Gaussianity. However, the shape of non-Gaussian deviations are specific
to the underlying distribution, with chi-squared and log-normal maps exhibiting
shapes corresponding to kurtosis non-Gaussianity while Rayleigh distribution
has skewness-dominated non-Gaussianity.

This demonstrates that kurtosis non-Gaussianity is not a universal feature of posi-

tively skewed random fields. The nature of non-Gaussianity at small scales depends

on the nature of the field under consideration. However, irrespective of the PDF,

the fields become more Gaussian as the large-scale fluctuations are discarded.
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7.3 Small-scale statistics of foreground components

Next, we analyse the non-Gaussian nature of free-free, AME and thermal dust

emissions at small angular scales. The following Galactic emission temperature

maps from Planck‡ are used for this study.

• Free-free: We use the Planck free-free emission measure map derived using

the Commander component separation method. This map has a resolution

set by Nside = 256, with FWHM = 60 arcmin.

• AME: Commander AME temperature map is used for AME. This map is

also at Nside = 256, with FWHM = 60 arcmin.

• Thermal dust: The Planck 545 GHz frequency map is used for thermal dust

emission. At these frequencies, thermal dust is known to be the dominant

emission. This map is provided at Nside = 2048. For our calculations, we

downgrade the map to Nside = 1024.

Figure 7.3.1 shows the foreground maps studied along with their histograms.

Planck CMB Common Intensity Mask is used to mask the high-intensity pix-

els in the Galactic region. It has a sky fraction of 77.9%. To minimise the errors

associated with sharp mask boundaries, the mask is apodized with 120 arcmin

Gaussian beam for Nside = 256 and 30 arcmin Gaussian beam for Nside = 1024

analyses. The smoothened mask is shown in figure 7.3.2. Note that all the maps

are presented in different units, as provided by Planck. Since rescaling the field

with a unit conversion factor does not alter the morphology, we do not standardize

all the maps to the same units.

To quantify the non-Gaussian deviations, Gaussian isotropic simulations corre-

sponding to each of the foreground maps are generated. We create 1000 Gaussian
‡The maps are obtained from https://pla.esac.esa.int/

https://pla.esac.esa.int/


Chapter 7: Statistical Properties of Other Foreground Components 198

cm 6 pc

Free-free

0 300 KRJ

AME

0 0.01101

MJy/sr

Thermal dust

0.002 7.164

0.0 0.5 1.0 1.5
f

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(f
)

Free-free

0.0 0.5 1.0 1.5 2.0
f 1e 4

0

2000

4000

6000

8000

10000

12000

14000
AME

0.005 0.010 0.015 0.020
f

0

50

100

150

200 Thermal dust

Figure 7.3.1: Maps of different Galactic components considered in this study
— free-free (top left), AME (top right) and thermal dust (middle). These maps
are obtained from Planck. Note that the units are as given by Planck, and we
have not standardized them. The color scale for free-free map follows a linear
scale, while the scale is histogram equalised for AME and thermal dust maps.
Bottom: The histogram of the maps given above.

simulations using the power spectrum of the respective maps. Similar to the previ-

ous chapter, the power spectrum is computed using the NaMaster§ package, which

takes care of the biases associated with incomplete sky coverage.

Figure 7.3.3 shows the non-Gaussian deviations (∆Vk) of free-free and AME maps.

They are computed for different ℓc values (ℓc = 20, 50, 90, and 140). We find that

similar to synchrotron maps, the level of non-Gaussianity decreases for higher ℓc

§https://namaster.readthedocs.io/

https://namaster.readthedocs.io/
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Common Mask

0 1
Figure 7.3.2: Planck CMB common intensity mask used in the analysis. A
Gaussian smoothing with FWHM = 120 arcmin is applied. This mask has a
sky-fraction of 77.9%.

values, implying that the fields tend to become Gaussian at small scales. This is

true for both AME and free-free maps. More importantly, ∆Vk exhibits the shape

of that of kurtosis non-Gaussianity for both AME and free-free maps, despite the

differences in the astrophysical mechanism responsible for these emissions.

Next, we discuss thermal dust emission. Using the high-resolution Planck dust

maps, we can explore further small scales. Here, we choose the uppercut to be

ℓ∗ = 1200. ∆Vk for the thermal dust map are shown in figure 7.3.4. As observed

for synchrotron, free-free, and AME, the nature of non-Gaussianity in the dust

maps is also of kurtosis type. Also, the level of non-Gaussianity decreases towards

small angular scales. However, the rate at which non-Gaussianity amplitude falls

with the scale is slower than that of other signals.

To estimate the scale dependence of non-Gaussianity for various Galactic compo-

nents, we examine how the non-Gaussian deviations vary as a function of ℓc. We

define the average of ∆Vk
¶,

∆V k =
1

Ntot

2∑
ν=−2

|∆Vk(ν)|, (7.5)

¶We ignore the correlations between the thresholds (ν), as done in the previous chapter.
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Figure 7.3.3: Non-Gaussian deviation (∆Vk) for Planck free-free and AME
foreground maps. The plots show that the level of non-Gaussianity decreases
for higher ℓc values, implying that the fields tend to become Gaussian at small
scales. This is similar to the results we got for synchrotron maps in the previous
chapters. More importantly, ∆Vk exhibits the shape of that of kurtosis non-
Gaussianity for both AME and free-free maps, despite the differences in the
astrophysical mechanism responsible for these emissions.

where Ntot = 21, as the bin size we choose is ∆ν = 0.2.

Figure 7.3.5 shows the variation of this quantity with respect to angular scales ℓc

for different foreground components, including synchrotron. In the top panel, we

show the results for all the components, extending up to ℓc = 140. Synchrotron

results are obtained using the Haslam map. The lower panel exclusively presents

results for the dust map, covering scales down to ℓc = 900.

We find that foreground signals exhibit distinct levels of non-Gaussianity. At

all angular scales, the amplitudes of ∆Vk are notably higher for free-free and

thermal dust compared to synchrotron and AME. As a function of ℓc, the level

of non-Gaussianity falls for all the emissions. However, the rate of decrease is
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Figure 7.3.4: Non-Gaussian deviation (∆Vk) for thermal dust emission. Like
other Galactic emissions, the level of non-Gaussianity decreases towards small
angular scales, with the nature of non-Gaussianity being of kurtosis origin. It
should be noted that the rate at which non-Gaussianity amplitude falls with the
scale is slower than those for other emissions.

different for different emissions. As an example, non-Gaussianity exhibits only a

modest reduction in dust maps, even at angular scales as fine as arcminutes. This

indicates that both the level of non-Gaussianity and the rate at which it declines

with angular scales rely on the astrophysics of these emissions. Despite this, all

these emissions exhibit a kurtosis-type non-Gaussianity. Table 7.3.1 provides a

summary of the nature and amplitudes of non-Gaussianity for different foreground

fields considered in this study.

All of these findings carry significant implications in the context of non-Gaussian

modelling for foreground signals. Irrespective of the signal, kurtosis non-Gaussianity

can be considered in modelling foregrounds at small angular scales. However,

the extent of non-Gaussianity and the scale over which non-Gaussian modelling

becomes necessary are distinct for each foreground, necessitating a better under-

standing of the underlying emission mechanism. A comprehensive examination of

how the level of non-Gaussianity relates to the astrophysical properties of specific

emissions is not within the scope of this current work but is planned for investi-

gation in the near future.
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Figure 7.3.5: Top: Average non-Gaussian deviation (∆V k) with respect to
the parameter ℓc for free-free, AME and thermal dust maps. Additionally, the
results for the synchrotron map (Haslam) are provided for comparison. Bottom:
The same plot as the above, focusing on thermal dust emission up to ℓc = 900.
It shows that the level of non-Gaussianity and the rate at which it falls with
angular scales are different for different emissions. Nevertheless, the kurtosis
nature of non-Gaussianity remains consistent across all emissions.

7.4 Summary and discussions

In this chapter, we have explored the characteristics of non-Gaussianity observed in

free-free, AME and thermal dust emission and compared them with synchrotron.

We first analyse a set of toy models consisting of random fields that follow posi-

tively skewed PDFs. Our objective is to investigate whether the kurtosis nature of

non-Gaussianity is a universal feature of positively skewed random fields at small

angular scales. In our analysis of positively skewed fields, we found that both chi-

squared and log-normal distributed maps exhibit kurtosis non-Gaussianity. How-

ever, the shape of non-Gaussian deviations of MFs for the Rayleigh map is domi-

nated by skewness. Based on this test, we conclude that kurtosis non-Gaussianity
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Foreground Map Non-Gaussianity

Nature ∆V
50

k ∆V
90

k ∆V
140

k

Synchrotron kurtosis 0.15 0.08 0.06

Free-free kurtosis 0.26 0.24 0.19

AME kurtosis 0.09 0.08 0.06

Thermal dust kurtosis 0.31 0.28 0.27

Table 7.3.1: The table summarises the nature and amplitudes of non-
Gaussianity observed in various foreground fields considered in this study. The
amplitude is expressed in terms of ∆V k averaged over all the three scalar MFs.
The superscript denotes the angular scale (ℓc) probed for each map. Our anal-
ysis indicates that the nature of non-Gaussianity of all the foreground maps is
of kurtosis origin, with skewness being subdominant. Also, our findings reveal
that, as we explore smaller angular scales, the amplitude of non-Gaussianity for
all the maps decreases, with the rate of decrease being specific to the Galactic
emission.

is not a universal property of random fields at small angular scales but depends on

the PDF of the field. However, it is important to mention that for all the fields, the

degree of non-Gaussianity reduces as we progressively remove large-scale modes

and focus on smaller scales. This observation is in agreement with the findings we

obtained previously for synchrotron maps.

We then explore the behaviour of different foreground components regarding non-

Gaussian features. This study involves examining Galactic emission maps, specif-

ically free-free emission, AME, and thermal dust emission, obtained from Planck

data. From our analysis using MFs, we observe that the nature of non-Gaussianity

in all these Galactic components is kurtosis-type, with skewness being sub-dominant.

By combining our findings with the previous synchrotron results, we can confi-

dently conclude that kurtosis non-Gaussianity is a common characteristic observed

in all the foreground maps at small scales, irrespective of the different astrophysical

sources of these signals. This finding holds significance for the small-scale mod-

elling of Galactic foregrounds, especially in the context of CMB experiments. We
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propose that, instead of assuming the small-scale foreground fields to be Gaussian

distributed, it is more realistic to model them as mildly non-Gaussian kurtosis

fluctuations. The approach developed by Martire et al. (2023) based on kurtosis

non-Gaussianity for small-scale synchrotron modelling is a relevant step in this

direction.

Nevertheless, in order to introduce non-Gaussianity at small scales, it is of ut-

most importance to quantify the scale dependence of non-Gaussian deviations.

This involves identifying the scales where kurtosis non-Gaussianity can be appro-

priately approximated and the scales where Gaussian approximations hold true.

Such knowledge is vital for accurately modelling foreground fields and minimising

the bias associated with the models. Our findings demonstrate that the scale-

dependence of non-Gaussian deviations varies across different Galactic compo-

nents and is contingent on their specific emission mechanisms. For instance, in the

case of thermal dust emission, which we have analysed up to arcminute scales, there

is less reduction in non-Gaussianity, even at the smallest scale probed (ℓc = 900).

In summary, our morphological analysis opens new direction in modelling Galactic

components at small angular scales.



Chapter 8

Beyond Minkowski Functionals and

Tensors — Total Absolute

Curvature∗

8.1 Introduction

Minkowski functionals (MFs) serve as prevalent statistical estimators for exploring

the morphological characteristics of various cosmological and astrophysical fields.

These quantities are based on integral geometry and measure the geometric and

topological properties of the connected regions and holes in the excursion set of a

random field. In the preceding chapters, we have harnessed the potential of these

tools in extracting the statistical features of foreground emissions. The vector and

tensor generalizations of MFs provide additional degrees of freedom (Schröder-Turk

∗This chapter is based on the papers that are under preparation.
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et al. 2010; Chingangbam et al. 2017b), thereby expanding their applicability in the

study of random fields. For example, the tensor generalization of contour length,

Contour Minkowski Tensor (CMT), contains information on how anisotropic the

structures are on an excursion set and tracks the presence of global alignment in

the data (Ganesan & Chingangbam 2017; Appleby et al. 2018a). Betti numbers

are related topological quantities, which count the connected regions and holes

in the excursion set and contain independent information (Chingangbam et al.

2012; Park et al. 2013). While these quantities provide valuable insights into the

morphological attributes of different fields in nature, there is scope for further

enhancement in this direction to fully understand the properties of these fields.

Among the three scalar MFs, the area fraction is directly tied to the field values

and does not involve the field derivatives. Conversely, contour length and genus

are defined as the integral along the boundary of the excursion set and contain

the information of the first and second derivatives of the field. In other words,

the information comprising the two first derivatives and three second derivatives

is condensed in the form of these two scalar MFs. With the aim of maximizing

the understanding of random field properties, one can explore new geometrical

and topological quantities by constructing other combinations of field derivatives.

In this chapter†, we introduce total absolute curvature (K), which contains infor-

mation not captured by the MFs. This quantity was studied for the first time by

Chern & Lashof (1957). Here, we introduce it for excursion sets of smooth random

fields in 2d.

Similar to MFs, K has a distinct functional form as a function of threshold, which

depends on the nature of the field. This property makes it useful in quantifying

the non-Gaussianity of a random field. Here, we provide the analytical ensemble

†This chapter slightly diverges from the main theme of the thesis, which is the characterization
of the statistical properties of foreground emissions. However, the tool presented here promises
to be useful in studying foreground fields.
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expectation formulae of K for a Gaussian isotropic field. We then present the nu-

merical computation of K for different mildly non-Gaussian fields, such as fNL and

gNL local-type non-Gaussianity. The results of these calculations offer additional

insights into identifying the level and nature of non-Gaussianity in random fields.

This chapter is structured in the following way. In Section 8.2, we start by defining

total absolute curvature for a single structure and then generalized to excursion

set boundaries of the smooth random field. Then, we describe how to calculate K

for random fields on a sphere and provide its analytical ensemble expectation for a

Gaussian isotropic field. A discussion on K for fields that are mildly non-Gaussian

is given in section 8.3. We conclude this chapter by summarizing our key findings

and their potential applications in section 8.4.

8.2 Total absolute curvature for random fields on

a sphere

For any closed curve C parametrized by it’s arc length ℓ, the total absolute cur-

vature is defined as (Chern & Lashof 1957),

K =
1

2π

∫
C

|κ| dℓ, (8.1)

where κ is the geodesic curvature of the curve.

Let us begin with a few simple examples. For a circle with radius r, κ = 1/r and

thus, K is unity. For any other convex region (closed curves for which κ is positive

at every point), K is the same as the genus and is unity. This is according to the
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Figure 8.2.1: A convex region (left) and a non-convex region (right). K is
unity for a convex region, while it is greater than 1 for a non-convex region.

Gauss-Bonnet theorem, which says that for a closed curve C,

∫
C

κ dℓ = 2π. (8.2)

If the closed curve contains negative κ values (non-convex regions), the value of

K is greater than 1. In geometry, a set or a region is said to be convex if the

line segment connecting any two points inside the region lies completely inside the

region. Otherwise, it is referred to as a non-convex region. Figure 8.2.1 shows a

convex region (left) and a non-convex region (right).

Now, let us extend K for the closed curves on the excursion set for random fields.

Consider a field u, defined on a 2d manifold. We assume u to be mean-free and

has standard deviation σ0. For each threshold value ν, we obtain the excursion

sets whose boundaries (given by the condition, u = νσ0) form closed curves. We

can generalize the definition of K as,

K(ν) =
1

2πA

∫
∂Qν

|κ| dℓ, (8.3)

where A is the area of the manifold under consideration. It is important to note

that eq. (8.3) defines the total absolute curvature per unit area (using the same

symbol as in eq. (8.1)).
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In terms of the field u and it’s derivatives, K is given as,

K(ν) =
1

8π2

∫
M

|∇u| δ(u− νσ0) |κ| da. (8.4)

This equation is similar to the expression for genus given in eq. (3.44). κ is ex-

pressed in terms of u and it’s derivatives as given in eq. (3.46). As in section 3.3.2.1,

δ-function is approximated as δ(u−νσ0) = 1/∆ν, if u ∈ [νσ0−∆ν/2, νσ0+∆ν/2]

and zero elsewhere. ∆ν is the bin size.

For a Gaussian isotropic field u, one can obtain the analytic ensemble expectation

value for K in terms of the vector X ≡ (u, u;1, u;2, u;11, u;12, u;22),

⟨K(ν)⟩ = 1

2π

∫
dXP (X) |∇u| δ(u− νσ0) |κ|, (8.5)

where P (X) is the joint PDF of X. As the field is Gaussian distributed,

P (X) =
1√

(2π)6 detΣ
exp

(
− 1

2
XTΣ−1X

)
. (8.6)

Σ is the covariance matrix (Tomita 1986) expressed in terms of σ0, σ1 ≡ ⟨|∇u|2⟩
and σ2 ≡ ⟨(∇2u)2⟩, as

Σ =



σ0 0 0 −σ1/2 −σ1/2 0

0 σ1/2 0 0 0 0

0 0 σ1/2 0 0 0

−σ1/2 0 0 σ2/2 σ2/6 0

−σ1/2 0 0 σ2/6 σ2/2 0

0 0 0 0 0 σ2/6



. (8.7)
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The final expression‡ for the ensemble expectation of K at each ν is,

⟨K(ν)⟩ = Aγ

∫ ∞

0

dJ

[
2π

{∫ α0

0

dαG cosα−
∫ π

π−α0

dαG cosα

−
∫ π−α0

α0

dαG cosα

}
+

∫ π−α0

α0

dαG{4θm cosα + 2
√
2 sinα

√
1− 2 cot2 α}

]
, (8.8)

where,

Aγ =
1

16π3

(
σ1

σ0

)2
1

γ
√

1− γ2
(8.9)

G(ν, J, α) = J3e−
J2

2 sinα exp

{
− 1

2

(
ν + γJ cosα√

1− γ2

)2}
. (8.10)

α0 = cot−1

(
1√
2

)
, θm = cos−1

(
−
√
2 cot α

)
, γ = σ2

1/σ0σ2. (8.11)

Here, J and α are the polar coordinates obtained from J1 and J2 which are defined

in terms of the eigenvalues of the Hessian of the field u as,

J1 = λ1 + λ2, J2
2 = 2(λ1 − λ2)

2. (8.12)

We now demonstrate the agreement between the numerical calculations and the

analytic formula. We compute K numerically for 200 Gaussian isotropic CMB

maps. The analytic K is computed by carrying out the numerical integration

given in eq. (8.8). The results are shown in Figure 8.2.2. We see that the results

are in good agreement.

The shape of K is symmetric and depends on γ values. γ is a factor which involves

σ2, the variance of the second derivatives of the field. Because of this, K provides

extra information compared to MFs.

‡The derivation of the analytical expectation is not included in the thesis and will be published
as Chingangbam et al. (2024).
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Figure 8.2.2: Absolute curvature K computed for 200 Gaussian isotropic CMB
maps (denoted by brown dots) compared with the analytical formula given in
eq (8.8) (cyan line). We see that numerical results are in good agreement with
the analytical formula.

8.3 K for mildly non-Gaussian fields

Next, we study the behaviour of K for mildly non-Gaussian fields on S2. We

analyse the non-Gaussian CMB maps with local-type non-Gaussianity obtained

using eq. (3.41) in the Sachs-Wolfe (SW) limit. Our focus is to illustrate the

power of K in providing additional information for non-Gaussianity. Here, we

work in the SW limit, which is sufficient to obtain the non-Gaussian information.

A complete analysis of non-Gaussian CMB maps using a full radiative transfer

function will be carried out in the near future.

We generate 1000 non-Gaussian CMB maps in the SW limit using eq. (3.41), with

healpix resolution Nside = 512 for three cases: only fNL, only gNL and fNL plus

gNL. We take fNL = 100 and gNL = 106, for which the non-Gaussian terms are of

comparable amplitudes. We also generate 1000 Gaussian CMB maps.
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Figure 8.3.1: Non-Gaussian deviations for K for local-type non-Gaussian
CMB maps: only fNL (left), only gNL (middle) and fNL plus gNL (right). ∆Vk

for contour length is also shown for comparison. The results are obtained using
1000 non-Gaussian and Gaussian CMB maps. The error bars represent 1σ re-
gion. Although the shape of ∆K is similar to ∆V1, they contain independent
information and complement each other.

As done previously for MFs, we define the non-Gaussian deviation for K as,

∆K = K −KG, (8.13)

where KG is the K computed for corresponding Gaussian maps. ∆K measures

the level and nature of non-Gaussianity.

Figure 8.3.1 shows the average non-Gaussian deviations, ∆K, normalised using

the amplitude of KG for different non-Gaussian cases. For comparison, ∆Vk for

contour length is also given. It is seen that ∆K shows the characteristic shapes

for different non-Gaussian cases. We observe that there is some similarity of the

shape of ∆K with the shape of ∆V1. However, they are not identical, and they

differ at high thresholds. They contain independent information.

Our analysis demonstrates the potential of K as a statistical tool in quantifying

the non-Gaussian nature of any random field. Together with MFs, MTs and Betti

numbers, K can be used to extract the non-Gaussian features of CMB and any

other random fields. We plan to use it for studying foreground maps in the future.
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8.4 Summary and discussions

Expanding the suite of morphological tools is crucial to maximising our knowledge

about the properties of random fields. In this chapter, we have introduced the

total absolute curvature (K), a new morphological tool to probe the geometric

and topological properties of smooth random fields.

K measures the absolute values of geodesic curvature integrated along the bound-

aries of the connected regions in an excursion set. We have presented the estimator

for K applicable to discretized 2D random fields and estimated the analytical ex-

pectation value of K for a Gaussian isotropic field. Further, we have studied the

non-Gaussian deviation of K for mildly non-Gaussian fields, the local-type fNL

and gNL CMB maps in the SW limit. Non-Gaussian deviation for K has a charac-

teristic shape similar to contour length but contains supplementary information.

Our analysis underscores the capability of this novel statistical quantity to capture

the non-Gaussian features of random fields.





Chapter 9

Conclusions

The eternal mystery of the world is its comprehensibility.

Albert Einstein

The primary objective of this thesis is to understand the statistical features of

Galactic emissions in the context of ongoing and upcoming CMB experiments.

Through rigorous analysis employing various statistical and morphological tools,

we explore various properties of these emissions to improve the efficiency of the

component separation methods used in the experiments. This facilitates a more

accurate recovery of the CMB signal from the raw data, thereby minimising the

potential biases in the cosmological inferences. While our primary focus during

the analysis was on CMB, the results presented in this thesis hold relevance for

both EoR 21 cm experiments and Line Intensity Mapping experiments. Below, we

provide a concise overview of the key findings we have obtained. We also outline

potential future directions that will extend the analysis carried out in this thesis.

Analytic formula for MFs for composite fields: We begin our analysis by studying
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the morphology of composite fields in terms of their constituent fields. This is

done by extending the analytical formulae for MFs of mildly non-Gaussian fields

in d dimensions. In real-life applications, there exist various situations where the

data is a sum of true signal and noise and/or contaminated by other signals. Using

the formulae of MFs, we are able to quantify the extent to which the presence of

secondary fields can introduce bias to properties of the signal of interest. As a

practical illustration, we apply our formalism to two examples: the first involves

a composite field consisting of a Gaussian CMB map and a Gaussian noise map,

while the second involves a composite field made up of a non-Gaussian CMB and

Gaussian noise. Our analysis shows that in the first case, the presence of noise

alters the amplitude of the MFs for CMB. The degree of bias depends on the SNR

value and the relative size of the structures of the signal and noise fields. In the

case of non-Gaussian CMB maps, the presence of noise can lead to a change in

the nature of non-Gaussianity apart from the amplitude shift. This modification

is quantified by examining how the generalized skewness-kurtosis parameters get

altered due to noise, thereby affecting the shape of non-Gaussian deviations.

Statistical properties of Haslam 408 MHz synchrotron map: We start characterizing

the statistical features of Galactic emissions by studying the non-Gaussianity and

SI of the all-sky Haslam 408 MHz synchrotron map. Haslam map is widely used

as the template for Galactic synchrotron in CMB experiments. They are also used

in EoR experiments to mitigate synchrotron contamination in detecting 21-cm

emission. In synchrotron modelling, small-scale fluctuations are approximated as

Gaussian distributed and statistically isotropic. One of the main goals of this work

is to check the validity of this assumption. We use morphological tools, MFs and

MTs, to quantify the level and nature of non-Gaussianity in the synchrotron field

at different sky regions and angular scales. Additionally, our analysis is supported

by statistical tools such as angular power spectrum, one-point PDFs and skewness-

kurtosis parameters. Our results show that the overall level of non-Gaussianity in

the Haslam map decreases as we go to smaller angular scales, in agreement with the



Chapter 9: Conclusions 217

previous studies. The level of non-Gaussianity also falls down as brighter regions in

the sky are masked. Nevertheless, further quantification reveals that at the Haslam

resolution (∼ 1.5◦), the non-Gaussianity is not insignificant enough to assume

the synchrotron fluctuations as Gaussian distributed at small angular scales. An

important finding of the Haslam analysis is that the Galactic synchrotron exhibits

kurtosis-type non-Gaussianity, with skewness being subdominant. Moreover, in

the cooler regions of the Haslam map, the non-Gaussian deviations of MFs fit

very well with the analytic perturbative expressions, keeping up to second-order

terms. These results have important implications in the small-scale modelling

of synchrotron signals. The SI tests using MTs show that the Haslam map is

statistically isotropic as the bright regions are masked as well as at smaller angular

scales, consistent with the assumptions taken in synchrotron modelling.

Multi-frequency analysis of synchrotron temperature and polarization maps: A nat-

ural extension of the Haslam analysis is to probe the statistical properties of syn-

chrotron maps given by other experiments. In the next work, we study the mor-

phological features of observed frequency maps as well as the component-separated

synchrotron maps given by WMAP and Planck telescopes. Our main goals are

twofold. First, we determine the variation of morphological properties of the total

foreground with observing frequency and compare it with simulations. For this, we

have used the maps containing total Galactic emissions with frequencies from 408

MHz to 33 GHz. This study elucidates how the morphology varies with frequency

due to the relative dominance of different foreground components at different fre-

quencies. We then compare these maps with the foreground simulations obtained

using PySM, offering insights into how well the simulations are able to reproduce

the observed multi-frequency data sets. Secondly, we determine the nature of

non-Gaussianity and SI of synchrotron fluctuations towards smaller scales using

various component-separated synchrotron temperature and polarization maps. We

find that all maps exhibit kurtosis-type non-Gaussianity, in agreement with the

Haslam map. This finding strongly motivates us to model small-scale fluctuations
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of synchrotron emission as a mildly non-Gaussian field (of kurtosis nature) rather

than a Gaussian field. All the maps are statistically isotropic at small scales.

However, we find that there exist significant morphological differences between

Haslam, WMAP, Planck and BeyondPlanck synchrotron maps. This could be be-

cause of the presence of residual contamination due to AME and/or free-free or

unresolved point sources in the WMAP and Planck synchrotron products. Our

results, therefore, throw light on the need for further improvement in the compo-

nent separation methodologies in CMB experiments. Finally, the kurtosis nature

of synchrotron non-Gaussianity indicates that the residual contamination of syn-

chrotron in the cleaned CMB maps results in kurtosis-type non-Gaussianity. In

such scenarios, 3-point statistics like bispectrum would be ineffective in identifying

these residuals.

Morphological Properties of free-free, AME and thermal dust emissions: We in-

vestigate the non-Gaussian properties of other major Galactic emissions such as

AME, free-free and thermal dust emissions. The main goal of this work is to see if

the kurtosis-origin of non-Gaussianity observed in synchrotron maps is a universal

property of astrophysical fields. Before delving into foreground maps, we anal-

yse a set of toy models, random fields that follow positively skewed PDFs such

as chi-squared, log-normal and Rayleigh distributions. Our analysis using MFs

reveals that out of the three, only chi-squared and log-normal exhibit kurtosis-

type non-Gaussianity at small scales. The non-Gaussian deviations of MFs for the

Rayleigh field have a shape consistent with skewness-dominated non-Gaussianity.

This demonstrates that the kurtosis nature of non-Gaussianity is not a universal

trait of all random fields; rather, it varies based on the specific PDF associated

with each field. Next, we examine the free-free, AME and thermal dust maps pro-

vided by Planck. Our results indicate that regardless of the distinct astrophysical

mechanism of emission, all these foreground maps contain non-Gaussianity of kur-

tosis origin. However, the level of non-Gaussianity and the rate at which it declines

with angular scales differs among different foregrounds, with these variations being
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dictated by the underlying physics of the emission processes. Instead of assuming

the small-scale foreground fields to be Gaussian distributed, we propose that it

is more realistic to model them as mildly non-Gaussian kurtosis fluctuations. It

should be noted that when injecting kurtosis non-Gaussianity at small scales, it

becomes essential to know the scale dependence of non-Gaussianity and estimate

the threshold scale beyond which Gaussian approximation holds true. These prop-

erties are different for different foreground components. We plan to carry out this

analysis in the near future.

Total Absolute Curvature: We introduce a new statistical tool, known as total ab-

solute curvature (K), to probe the geometric and topological properties of random

fields in nature. Defined as the absolute curvature parameter integrated over the

boundaries of the excursion sets, this quantity provides independent information

and complements MFs in extracting the properties of random fields. We have

obtained the estimator for K for a discretized random field on the sphere and

presented the analytical expectation value of K for Gaussian isotropic fields. By

studying the non-Gaussian deviations of K for non-Gaussian CMB maps, we have

established the potential of this new morphological descriptor in constraining the

non-Gaussian features in cosmological and foreground fields of different kinds.

Below, we mention some possible future directions of the analysis that was carried

out in this thesis.

• We plan to develop pipelines for component separation that incorporate

kurtosis non-Gaussianity for foreground components at small scales that we

have observed.

• Our derivation of the MFs for a composite field can be further extended to

include terms that are second-order in σ0 (kurtosis terms). The applica-

tions of these formulas, both in CMB and large-scale structure data, will be
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valuable. For example, we can quantify how residual foregrounds can bias

primordial non-Gaussianity. We plan to carry out this work in the future.

• The analysis done for Haslam and other synchrotron maps can be extended

to data sets such as SPASS, QUIJOTE, CBASS, etc. These data sets

have higher signal-to-noise for polarization compared to Planck and WMAP.

Hence, they hold much promise for a deeper understanding of the statistical

properties of both temperature and polarization foregrounds. This work will

be undertaken in the near future.

• Using the whole suite of statistical tools, such as MFs, MTs, Betti numbers

and total absolute curvature, we intend to conduct a detailed quantification

of the primordial non-Gaussianity using the CMB data.
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